{"title":"FPGA implementation of a channel noise canceller for image transmission","authors":"Omid Sharifi Tehrani, M. Ashourian, P. Moallem","doi":"10.1109/IRANIANMVIP.2010.5941155","DOIUrl":null,"url":null,"abstract":"An FPGA-based channel noise canceller using a fixed-point standard-LMS algorithm for image transmission is proposed. The proposed core is designed in VHDL93 language as basis of FIR adaptive filter. The proposed model uses 12-bits word-length for digital input data while internal computations are based on 17-bits word-length because of considering guard bits to prevent overflow. The designed core is FPGA-brand-independent, thus can be implemented on any brand to create a system-on-programmable-chip (SoPC). In this paper, XILINX SPARTAN3E and VIRTEX4 FPGA series are used as implementation platform. A discussion is made on DSP, Hardware/Software co-design and pure-hardware implementations. Although using a pure-hardware implementation results in better performance, it is more complex than other structures. Results obtained show improvements in area-resource utilization, convergence speed and performance in the designed pure-hardware channel noise canceller core.","PeriodicalId":350778,"journal":{"name":"2010 6th Iranian Conference on Machine Vision and Image Processing","volume":"26 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 6th Iranian Conference on Machine Vision and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2010.5941155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
An FPGA-based channel noise canceller using a fixed-point standard-LMS algorithm for image transmission is proposed. The proposed core is designed in VHDL93 language as basis of FIR adaptive filter. The proposed model uses 12-bits word-length for digital input data while internal computations are based on 17-bits word-length because of considering guard bits to prevent overflow. The designed core is FPGA-brand-independent, thus can be implemented on any brand to create a system-on-programmable-chip (SoPC). In this paper, XILINX SPARTAN3E and VIRTEX4 FPGA series are used as implementation platform. A discussion is made on DSP, Hardware/Software co-design and pure-hardware implementations. Although using a pure-hardware implementation results in better performance, it is more complex than other structures. Results obtained show improvements in area-resource utilization, convergence speed and performance in the designed pure-hardware channel noise canceller core.