Tracking and counting vehicles in traffic video sequences using particle filtering

Christiano Bouvié, J. Scharcanski, Pablo Barcellos, Fabiano Lopes Escouto
{"title":"Tracking and counting vehicles in traffic video sequences using particle filtering","authors":"Christiano Bouvié, J. Scharcanski, Pablo Barcellos, Fabiano Lopes Escouto","doi":"10.1109/I2MTC.2013.6555527","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to track and count vehicles in video traffic sequences. The proposed method uses image processing, particle filtering, and motion coherence to group particles in videos, forming convex shapes that are analyzed for potential vehicles. This analysis takes into consideration the convex shape of the objects and background information to merge or split the groupings. After a vehicle is identified, it is tracked using the similarity of color histograms on windows centered at the particle locations.","PeriodicalId":432388,"journal":{"name":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"6 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2013.6555527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

This paper presents a new method to track and count vehicles in video traffic sequences. The proposed method uses image processing, particle filtering, and motion coherence to group particles in videos, forming convex shapes that are analyzed for potential vehicles. This analysis takes into consideration the convex shape of the objects and background information to merge or split the groupings. After a vehicle is identified, it is tracked using the similarity of color histograms on windows centered at the particle locations.
基于粒子滤波的交通视频序列车辆跟踪与计数
本文提出了一种视频交通序列中车辆跟踪和计数的新方法。该方法使用图像处理、粒子滤波和运动相干性对视频中的粒子进行分组,形成凸形状,用于分析潜在的车辆。这种分析考虑了物体的凸形状和背景信息来合并或拆分分组。识别车辆后,使用以粒子位置为中心的窗口上的颜色直方图的相似性来跟踪车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信