Real-time noise reduction for sonar video image using recursive filtering

Hyeonwoo Cho, Juhyun Pyo, Jeonghwe Gu, Hangil Jeo, Son-cheol Yu
{"title":"Real-time noise reduction for sonar video image using recursive filtering","authors":"Hyeonwoo Cho, Juhyun Pyo, Jeonghwe Gu, Hangil Jeo, Son-cheol Yu","doi":"10.23919/OCEANS.2015.7401928","DOIUrl":null,"url":null,"abstract":"The forward-looking imaging sonar is a prospective solution for underwater visual surveying because it allows longrange visibility in turbid water, and provides a high frame rate. However, the acoustic images are degraded by speckle noise. In this paper, we propose an algorithm to reduce the noise in a series of acoustic image frames obtained by using a forward-looking imaging sonar. The time-series model of the acoustic images are developed for predicting the changes in pixel coordinates. Also, the Kalman filter estimates the noise-reduced pixels of the images based on the acoustic image model. This recursive treatment is suitable for the successive image frames.","PeriodicalId":403976,"journal":{"name":"OCEANS 2015 - MTS/IEEE Washington","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2015 - MTS/IEEE Washington","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2015.7401928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The forward-looking imaging sonar is a prospective solution for underwater visual surveying because it allows longrange visibility in turbid water, and provides a high frame rate. However, the acoustic images are degraded by speckle noise. In this paper, we propose an algorithm to reduce the noise in a series of acoustic image frames obtained by using a forward-looking imaging sonar. The time-series model of the acoustic images are developed for predicting the changes in pixel coordinates. Also, the Kalman filter estimates the noise-reduced pixels of the images based on the acoustic image model. This recursive treatment is suitable for the successive image frames.
基于递归滤波的声纳视频图像实时降噪
前视成像声纳是水下视觉测量的前瞻性解决方案,因为它可以在浑浊水中实现远距离可见,并提供高帧率。然而,声图像会受到散斑噪声的影响。本文提出了一种降低前视成像声纳所获得的一系列声图像帧中的噪声的算法。建立了声学图像的时间序列模型,用于预测像元坐标的变化。同时,卡尔曼滤波器根据声学图像模型估计图像的降噪像素。这种递归处理方法适用于连续图像帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信