Omicron Virus Data Analytics Using Extended RNN Technique

A. Srinivasulu, Mr. Anand Kumar Gupta, Dr. Kamal Kant Hiran, Dr. Tarkeswar Barua, Mr., G. Sreenivasulu, Dr. Sivaram Rajeyyagari, Dr. Madhusudhana Subramanyam
{"title":"Omicron Virus Data Analytics Using Extended RNN Technique","authors":"A. Srinivasulu, Mr. Anand Kumar Gupta, Dr. Kamal Kant Hiran, Dr. Tarkeswar Barua, Mr., G. Sreenivasulu, Dr. Sivaram Rajeyyagari, Dr. Madhusudhana Subramanyam","doi":"10.33140/ijcrt.07.03.02","DOIUrl":null,"url":null,"abstract":"The OMICRON case that tainted human beings become first observed in China towards the end of 2021. From that point, OMICRON has spread practically all nations on the planet. To conquer this issue, it requires a fast work to recognize people tainted with OMICRON all the more rapidly. This research article proposes that RNN techniques to be utilized for rapid detection and predicting of OMICRON infections. RNN is finished utilizing the Elman agency and implemented to the OMICRON dataset gathered from Kaggle. The dataset accommodates of 75% preparing information and 25% analyzing information. The learning boundaries utilized were the most extreme age, secret hubs, and late learning. Results are for this exploration results show the level of precision is 88.28. Oddity is one of the elective conclusions for potential OMICRON illness is Recurrent Neural Network (RNN).","PeriodicalId":310821,"journal":{"name":"International Journal of Cancer Research & Therapy","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cancer Research & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/ijcrt.07.03.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The OMICRON case that tainted human beings become first observed in China towards the end of 2021. From that point, OMICRON has spread practically all nations on the planet. To conquer this issue, it requires a fast work to recognize people tainted with OMICRON all the more rapidly. This research article proposes that RNN techniques to be utilized for rapid detection and predicting of OMICRON infections. RNN is finished utilizing the Elman agency and implemented to the OMICRON dataset gathered from Kaggle. The dataset accommodates of 75% preparing information and 25% analyzing information. The learning boundaries utilized were the most extreme age, secret hubs, and late learning. Results are for this exploration results show the level of precision is 88.28. Oddity is one of the elective conclusions for potential OMICRON illness is Recurrent Neural Network (RNN).
使用扩展RNN技术的欧米克隆病毒数据分析
将于2021年底在中国首次观察到被感染人类的OMICRON病例。从那时起,OMICRON已经传播到地球上几乎所有的国家。为了解决这个问题,需要更快地识别被OMICRON污染的人。本文提出将RNN技术应用于OMICRON感染的快速检测和预测。RNN利用Elman代理完成,并实现到从Kaggle收集的OMICRON数据集。该数据集包含75%的准备信息和25%的分析信息。使用的学习界限是最极端的年龄,秘密中心和晚期学习。结果表明,本次勘探的精度等级为88.28。古怪性是潜在OMICRON疾病的选择性结论之一是递归神经网络(RNN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信