A non-Gaussian LCMV beamformer for MEG source reconstruction

H. Mohseni, M. Kringelbach, M. Woolrich, T. Aziz, P. P. Smith
{"title":"A non-Gaussian LCMV beamformer for MEG source reconstruction","authors":"H. Mohseni, M. Kringelbach, M. Woolrich, T. Aziz, P. P. Smith","doi":"10.1109/ICASSP.2013.6637850","DOIUrl":null,"url":null,"abstract":"Evidence suggests that magnetoencephalogram (MEG) data have characteristics with non-Gaussian distribution, however, standard methods for source localisation assume Gaussian behaviour. We present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity in the MEG data. By providing a Bayesian formulation for linearly constraint minimum variance (LCMV) beamformer, we extend this approach and show that how the source probability density function (pdf), which is not necessarily Gaussian, can be estimated. The proposed non-Gaussian beamformer is shown to give better spatial estimates than the LCMV beamformer, in both simulations incorporating non-Gaussian signal and in real MEG measurements.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"520 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6637850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evidence suggests that magnetoencephalogram (MEG) data have characteristics with non-Gaussian distribution, however, standard methods for source localisation assume Gaussian behaviour. We present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity in the MEG data. By providing a Bayesian formulation for linearly constraint minimum variance (LCMV) beamformer, we extend this approach and show that how the source probability density function (pdf), which is not necessarily Gaussian, can be estimated. The proposed non-Gaussian beamformer is shown to give better spatial estimates than the LCMV beamformer, in both simulations incorporating non-Gaussian signal and in real MEG measurements.
一种用于MEG源重构的非高斯LCMV波束形成器
有证据表明,脑磁图(MEG)数据具有非高斯分布的特征,然而,源定位的标准方法假设高斯行为。我们提出了一种新的非高斯源估计方法,用于定位脑磁图数据中的脑活动。通过提供线性约束最小方差(LCMV)波束形成器的贝叶斯公式,我们扩展了这种方法,并展示了如何估计不一定是高斯的源概率密度函数(pdf)。在包含非高斯信号的模拟和实际MEG测量中,所提出的非高斯波束形成器比LCMV波束形成器具有更好的空间估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信