The Study on Clustering Analysis in Data Mining

Scott Mr, A. Caroline
{"title":"The Study on Clustering Analysis in Data Mining","authors":"Scott Mr, A. Caroline","doi":"10.20894/ijdmta.102.008.001.011","DOIUrl":null,"url":null,"abstract":"Cluster analysis is the duty of assemblage a set of items in such a manner that items in the same group are more alike to each other than to those in other groups .A collection of data entities can be treated as one group. Whereas undertaking gathering investigation, we first distinct the regular of records into groups based on data association and then assign the tags to the groups. The main advantage of gathering over arrangement is that, it is adaptable to variations and helps single out useful features that distinguishes dissimilar groups. It is a most significant tasks to efficient the data mining, and a common method for numerical data analysis, used in numerous fields. In This paper converse about different types of clustering algorithms such as Partitioning Method, Hierarchical Method Density-based Method, Grid-Based Method, Model-Based Method, and Constraint-based Method.","PeriodicalId":414709,"journal":{"name":"International Journal of Data Mining Techniques and Applications","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20894/ijdmta.102.008.001.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cluster analysis is the duty of assemblage a set of items in such a manner that items in the same group are more alike to each other than to those in other groups .A collection of data entities can be treated as one group. Whereas undertaking gathering investigation, we first distinct the regular of records into groups based on data association and then assign the tags to the groups. The main advantage of gathering over arrangement is that, it is adaptable to variations and helps single out useful features that distinguishes dissimilar groups. It is a most significant tasks to efficient the data mining, and a common method for numerical data analysis, used in numerous fields. In This paper converse about different types of clustering algorithms such as Partitioning Method, Hierarchical Method Density-based Method, Grid-Based Method, Model-Based Method, and Constraint-based Method.
数据挖掘中的聚类分析研究
聚类分析的任务是将一组数据集合在一起,使同一组中的数据比其他组中的数据更相似。数据实体的集合可以被视为一个组。在进行收集调查时,我们首先根据数据关联将记录的规律划分为组,然后为组分配标签。收集相对于排列的主要优势在于,它可以适应变化,并有助于挑出有用的特征来区分不同的群体。高效的数据挖掘是一项重要的任务,也是数值数据分析的常用方法,应用于许多领域。本文讨论了不同类型的聚类算法,如分区方法、分层方法、基于密度的方法、基于网格的方法、基于模型的方法和基于约束的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信