AC voltage sensorless control of battery charger system in electric vehicle applications

Cong-Long Nguyen, Hong‐Hee Lee
{"title":"AC voltage sensorless control of battery charger system in electric vehicle applications","authors":"Cong-Long Nguyen, Hong‐Hee Lee","doi":"10.1109/ASSCC.2012.6523321","DOIUrl":null,"url":null,"abstract":"This paper presents an effective control scheme for an electric vehicle battery charger where a symmetrical bridgeless power factor-corrected converter and a buck converter are cascaded. Both converters have been popular in industries because of their high efficiency, low cost, and compact size, hence combining these two converters makes the overall battery charging system strongly efficient. Moreover, this charger topology can operate under universal input voltage condition and attain a desired battery voltage and charging current without any ripple. In order to reduce the system cost, an estimating ac input voltage technique is introduced, which especially does not require the converter component information and therefore it is robust to the circuit parameters variation. Additionally, by adopting a duty ratio feed-forward path in current control loop, a unity input power factor and zero input current harmonic are achieved. The feasibility and practical value of the proposed approach are verified by simulation and experimental results.","PeriodicalId":341348,"journal":{"name":"2012 10th International Power & Energy Conference (IPEC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Power & Energy Conference (IPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2012.6523321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents an effective control scheme for an electric vehicle battery charger where a symmetrical bridgeless power factor-corrected converter and a buck converter are cascaded. Both converters have been popular in industries because of their high efficiency, low cost, and compact size, hence combining these two converters makes the overall battery charging system strongly efficient. Moreover, this charger topology can operate under universal input voltage condition and attain a desired battery voltage and charging current without any ripple. In order to reduce the system cost, an estimating ac input voltage technique is introduced, which especially does not require the converter component information and therefore it is robust to the circuit parameters variation. Additionally, by adopting a duty ratio feed-forward path in current control loop, a unity input power factor and zero input current harmonic are achieved. The feasibility and practical value of the proposed approach are verified by simulation and experimental results.
交流电压无传感器控制在电动汽车电池充电系统中的应用
本文提出了一种采用对称无桥功率因数校正变换器和降压变换器级联的电动汽车电池充电器的有效控制方案。这两种转换器由于其高效率,低成本和紧凑的尺寸而在工业中很受欢迎,因此结合这两种转换器使整个电池充电系统效率很高。此外,该充电器拓扑结构可以在通用输入电压条件下工作,并获得理想的电池电压和充电电流,没有任何纹波。为了降低系统成本,提出了一种不需要变换器元件信息的交流输入电压估计方法,该方法对电路参数变化具有较强的鲁棒性。此外,在电流控制环中采用占空比前馈路径,实现了输入功率因数为单位,输入电流谐波为零。仿真和实验结果验证了该方法的可行性和实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信