Better together: Fusing visual saliency methods for retrieving perceptually-similar images

Amanda Fernandez, Siwei Lyu
{"title":"Better together: Fusing visual saliency methods for retrieving perceptually-similar images","authors":"Amanda Fernandez, Siwei Lyu","doi":"10.1109/ICCE.2015.7066502","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a new model of visual saliency by fusing results from existing saliency methods. We first briefly survey existing saliency models, and justify the fusion methods as they take advantage of the strengths of all existing works. Initial experiments indicate that the fused saliency methods generate results closer to the ground-truth than the original methods alone. We apply our method to content-based image retrieval, leveraging a fusion method as a feature extractor. We perform experimental evaluation and show a marked improvement in retrieval performance using our fusion method over individual saliency models.","PeriodicalId":169402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics (ICCE)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2015.7066502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we describe a new model of visual saliency by fusing results from existing saliency methods. We first briefly survey existing saliency models, and justify the fusion methods as they take advantage of the strengths of all existing works. Initial experiments indicate that the fused saliency methods generate results closer to the ground-truth than the original methods alone. We apply our method to content-based image retrieval, leveraging a fusion method as a feature extractor. We perform experimental evaluation and show a marked improvement in retrieval performance using our fusion method over individual saliency models.
更好地结合:融合视觉显著性方法来检索感知相似的图像
本文通过融合现有显著性方法的结果,描述了一种新的视觉显著性模型。我们首先简要地调查了现有的显著性模型,并证明了融合方法,因为它们利用了所有现有作品的优势。初步实验表明,融合显著性方法产生的结果比单独的原始方法更接近真实情况。我们将该方法应用于基于内容的图像检索,利用融合方法作为特征提取器。我们进行了实验评估,并显示使用我们的融合方法在检索性能上显着改善了个体显著性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信