Exploiting correlation in neural signals for data compression

Sebastian Schmale, J. Hoeffmann, Benjamin Knoop, G. Kreiselmeyer, H. Hamer, D. Peters-Drolshagen, S. Paul
{"title":"Exploiting correlation in neural signals for data compression","authors":"Sebastian Schmale, J. Hoeffmann, Benjamin Knoop, G. Kreiselmeyer, H. Hamer, D. Peters-Drolshagen, S. Paul","doi":"10.5281/ZENODO.43887","DOIUrl":null,"url":null,"abstract":"Progress in invasive brain research relies on signal acquisition at high temporal- and spatial resolutions, resulting in a data deluge at the (wireless) interface to the external world. Hence, data compression at the implant site is necessary in order to comply with the neurophysiological restrictions, especially when it comes to recording and transmission of neural raw data. This work investigates spatial correlations of neural signals, leading to a significant increase in data compression with a suitable sparse signal representation before the wireless data transmission at the implant site. Subsequently, we used the correlation-aware two-dimensional DCT used in image processing, to exploit spatial correlation of the data set. In order to guarantee a certain sparsity in the signal representation, two paradigms of zero forcing are evaluated and applied: Significant coefficients- and block sparsity-zero forcing.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Progress in invasive brain research relies on signal acquisition at high temporal- and spatial resolutions, resulting in a data deluge at the (wireless) interface to the external world. Hence, data compression at the implant site is necessary in order to comply with the neurophysiological restrictions, especially when it comes to recording and transmission of neural raw data. This work investigates spatial correlations of neural signals, leading to a significant increase in data compression with a suitable sparse signal representation before the wireless data transmission at the implant site. Subsequently, we used the correlation-aware two-dimensional DCT used in image processing, to exploit spatial correlation of the data set. In order to guarantee a certain sparsity in the signal representation, two paradigms of zero forcing are evaluated and applied: Significant coefficients- and block sparsity-zero forcing.
利用神经信号的相关性进行数据压缩
侵入性脑研究的进展依赖于高时间和空间分辨率的信号采集,导致与外部世界的(无线)接口数据泛滥。因此,为了符合神经生理学的限制,特别是在记录和传输神经原始数据时,必须对植入部位的数据进行压缩。这项工作研究了神经信号的空间相关性,在植入部位的无线数据传输之前,通过适当的稀疏信号表示来显著增加数据压缩。随后,我们使用图像处理中使用的相关感知二维DCT来挖掘数据集的空间相关性。为了保证信号表示具有一定的稀疏性,评估并应用了两种零强迫范式:显著系数零强迫范式和块稀疏零强迫范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信