Which Feature is Better? TF*IDF Feature or Topic Feature in Text Clustering

Xiahui Pan, Jiajun Cheng, Youqing Xia, Xin Zhang, Hui Wang
{"title":"Which Feature is Better? TF*IDF Feature or Topic Feature in Text Clustering","authors":"Xiahui Pan, Jiajun Cheng, Youqing Xia, Xin Zhang, Hui Wang","doi":"10.1109/MINES.2012.249","DOIUrl":null,"url":null,"abstract":"In this paper, we conduct a comparative study on two different text features in text corpus clustering: TF*IDF feature and Topic feature. The former is mainly used in similarity-based text corpus clustering methods, while the latter, which is produced by LDA model, is used to identify the topics of texts. We conduct clustering experiments on 20-newsgroups (20NG) datasets. Based on the dataset, two typical text clustering methods are respectively employed to compare the clustering performance of the above two text features. The experiments demonstrate if the optimal topic number is chosen, the topic feature outperforms in the clustering accuracy.","PeriodicalId":208089,"journal":{"name":"2012 Fourth International Conference on Multimedia Information Networking and Security","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Multimedia Information Networking and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MINES.2012.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we conduct a comparative study on two different text features in text corpus clustering: TF*IDF feature and Topic feature. The former is mainly used in similarity-based text corpus clustering methods, while the latter, which is produced by LDA model, is used to identify the topics of texts. We conduct clustering experiments on 20-newsgroups (20NG) datasets. Based on the dataset, two typical text clustering methods are respectively employed to compare the clustering performance of the above two text features. The experiments demonstrate if the optimal topic number is chosen, the topic feature outperforms in the clustering accuracy.
哪个功能更好?文本聚类中的TF*IDF特征或主题特征
在本文中,我们对文本语料库聚类中两种不同的文本特征:TF*IDF特征和Topic特征进行了比较研究。前者主要用于基于相似度的文本语料库聚类方法,后者由LDA模型产生,用于文本主题识别。我们对20个新闻组(20NG)数据集进行聚类实验。在数据集的基础上,分别采用两种典型的文本聚类方法,比较上述两种文本特征的聚类性能。实验表明,如果选择最优的主题数,主题特征在聚类精度上优于主题特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信