Robust phase detection in distribution systems

M. S. Modarresi, Tong Huang, Hao Ming, Le Xie
{"title":"Robust phase detection in distribution systems","authors":"M. S. Modarresi, Tong Huang, Hao Ming, Le Xie","doi":"10.1109/TPEC.2017.7868279","DOIUrl":null,"url":null,"abstract":"This paper proposes an on-line algorithm to detect the phase connection for end users in a power distribution system. In distribution systems, feeder switching often changes the phase connection information of end users in the real-time operation. Recently, Advanced Metering infrastructure (AMI) are being installed in distribution systems. They enable utilities to record end-point voltages in defined intervals. This paper first presents a method to find phases belonging to same phase using synchronized data and fixed topology of distribution grid. Then, this paper presents a method to clean the noisy data through Artificial Neural Network (ANN) trained by the historical data. The proposed methods is tested using modified 13-bus IEEE distribution test system on the low-voltage side.","PeriodicalId":391980,"journal":{"name":"2017 IEEE Texas Power and Energy Conference (TPEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC.2017.7868279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper proposes an on-line algorithm to detect the phase connection for end users in a power distribution system. In distribution systems, feeder switching often changes the phase connection information of end users in the real-time operation. Recently, Advanced Metering infrastructure (AMI) are being installed in distribution systems. They enable utilities to record end-point voltages in defined intervals. This paper first presents a method to find phases belonging to same phase using synchronized data and fixed topology of distribution grid. Then, this paper presents a method to clean the noisy data through Artificial Neural Network (ANN) trained by the historical data. The proposed methods is tested using modified 13-bus IEEE distribution test system on the low-voltage side.
配电系统的鲁棒相位检测
本文提出了一种在线检测配电系统中终端用户相接的算法。在配电系统中,馈线切换在实时运行中往往会改变终端用户的相接信息。最近,高级计量基础设施(AMI)正在配电系统中安装。它们使公用事业公司能够在规定的间隔内记录端点电压。本文首先提出了一种利用配电网同步数据和固定拓扑结构寻找同相相的方法。然后,本文提出了一种利用历史数据训练的人工神经网络(ANN)对噪声数据进行清除的方法。采用改进的13总线IEEE配电测试系统在低压侧对所提出的方法进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信