On parameter estimation of the envelope Gaussian mixture model

Linyun Huang, Y. Hong, E. Viterbo
{"title":"On parameter estimation of the envelope Gaussian mixture model","authors":"Linyun Huang, Y. Hong, E. Viterbo","doi":"10.1109/AusCTW.2014.6766423","DOIUrl":null,"url":null,"abstract":"In many communication systems, the Gaussian mixture model (GMM) is widely used to characterize non-Gaussian man-made and natural interference. The envelope distribution of such noise model is often expressed as a weighted sum of Rayleigh if in-phase and quadrature components of the noise are dependent. Instead, in this paper, a simple and exact closed form probability density function of the envelope Gaussian mixture model (i.e. the envelope of independent in-phase and quadrature components of complex non-Gaussian noise) is obtained. Further-more, the problem of estimating of the envelope Gaussian mixture parameters is addressed. The proposed estimator of weights and variances is based upon the Expectation-Maximization (EM) algorithm.","PeriodicalId":378421,"journal":{"name":"2014 Australian Communications Theory Workshop (AusCTW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Australian Communications Theory Workshop (AusCTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AusCTW.2014.6766423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In many communication systems, the Gaussian mixture model (GMM) is widely used to characterize non-Gaussian man-made and natural interference. The envelope distribution of such noise model is often expressed as a weighted sum of Rayleigh if in-phase and quadrature components of the noise are dependent. Instead, in this paper, a simple and exact closed form probability density function of the envelope Gaussian mixture model (i.e. the envelope of independent in-phase and quadrature components of complex non-Gaussian noise) is obtained. Further-more, the problem of estimating of the envelope Gaussian mixture parameters is addressed. The proposed estimator of weights and variances is based upon the Expectation-Maximization (EM) algorithm.
包络高斯混合模型的参数估计
在许多通信系统中,高斯混合模型(GMM)被广泛用于描述非高斯人为干扰和自然干扰。如果噪声的同相分量和正交分量相互依赖,这种噪声模型的包络分布通常表示为瑞利分量的加权和。相反,本文得到了包络高斯混合模型(即复杂非高斯噪声的独立同相分量和正交分量的包络)的一个简单而精确的封闭式概率密度函数。此外,还讨论了包络高斯混合参数的估计问题。提出了基于期望最大化(EM)算法的权重和方差估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信