Using Structural Models for Default Prediction

G. Grass
{"title":"Using Structural Models for Default Prediction","authors":"G. Grass","doi":"10.2139/ssrn.1343091","DOIUrl":null,"url":null,"abstract":"I propose a new procedure for extracting probabilities of default from structural credit risk models based on virtual credit spreads (VCS) and implement this approach assuming a simple Merton (1974) model of capital structure. VCS are derived from the increase in the payout to debtholders necessary to offset the impact of an increase in asset variance on the option value of debt and equity. In contrast to real-world credit spreads, VCS do not contain risk premia for default timing and recovery uncertainty, thus yielding a purer estimate of physical default probabilities. Relative to the Merton distance to default (DD) measure, my measure (i) predicts higher credit risk for safe firms and lower credit risk for firms with high volatility and leverage (ii) requires fewer parameter assumptions (iii) clearly outperforms the DD measure when used to predict corporate default.","PeriodicalId":437258,"journal":{"name":"Corporate Finance: Capital Structure & Payout Policies","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corporate Finance: Capital Structure & Payout Policies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1343091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

I propose a new procedure for extracting probabilities of default from structural credit risk models based on virtual credit spreads (VCS) and implement this approach assuming a simple Merton (1974) model of capital structure. VCS are derived from the increase in the payout to debtholders necessary to offset the impact of an increase in asset variance on the option value of debt and equity. In contrast to real-world credit spreads, VCS do not contain risk premia for default timing and recovery uncertainty, thus yielding a purer estimate of physical default probabilities. Relative to the Merton distance to default (DD) measure, my measure (i) predicts higher credit risk for safe firms and lower credit risk for firms with high volatility and leverage (ii) requires fewer parameter assumptions (iii) clearly outperforms the DD measure when used to predict corporate default.
使用结构模型进行默认预测
我提出了一个新的程序,从基于虚拟信用利差(VCS)的结构性信用风险模型中提取违约概率,并假设一个简单的默顿(1974)资本结构模型来实现这一方法。风险投资来源于为抵消资产方差增加对债务和股权期权价值的影响而向债权人支付的支出的增加。与现实世界的信用利差相比,虚拟货币不包含违约时间和恢复不确定性的风险溢价,因此产生了对物理违约概率的更纯粹的估计。相对于默顿违约距离(DD)度量,我的度量(i)预测安全公司的信用风险较高,高波动性和杠杆公司的信用风险较低(ii)需要较少的参数假设(iii)在用于预测公司违约时明显优于DD度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信