Breast Cancer Classification Using Machine Learning

K. R, R. T M, Manav G Krishna, Nanda Gopal, Kishan G
{"title":"Breast Cancer Classification Using Machine Learning","authors":"K. R, R. T M, Manav G Krishna, Nanda Gopal, Kishan G","doi":"10.47392/irjash.2023.s012","DOIUrl":null,"url":null,"abstract":"Manual determination of breast cancer takes a lot of time sometimes weeks or months and is perilous with a high pace of morbidity, mortality and can involve human error. an early assurance will help the treatment of this sickness. So, determination of breast cancer using machine learning model result in quick identification of tumor. This research paper focuses on early determination of breast cancer as benign or malignant. with the help breast cancer dataset, the research paper aims to produce a better decision-making visualization pat-tern through swarm plots and heat maps. To accomplish this, we utilized Light GBM Calculation and furthermore contrasted our model’s exhibition and other surviving ML models specifically Logistic Regression, Gradient Boosting Algorithm, Random Forest Algorithm and XG Boost Algorithm. We were able to achieve the highest accuracy of 97.07% with the Light GBM Algorithm.","PeriodicalId":244861,"journal":{"name":"International Research Journal on Advanced Science Hub","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Science Hub","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjash.2023.s012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Manual determination of breast cancer takes a lot of time sometimes weeks or months and is perilous with a high pace of morbidity, mortality and can involve human error. an early assurance will help the treatment of this sickness. So, determination of breast cancer using machine learning model result in quick identification of tumor. This research paper focuses on early determination of breast cancer as benign or malignant. with the help breast cancer dataset, the research paper aims to produce a better decision-making visualization pat-tern through swarm plots and heat maps. To accomplish this, we utilized Light GBM Calculation and furthermore contrasted our model’s exhibition and other surviving ML models specifically Logistic Regression, Gradient Boosting Algorithm, Random Forest Algorithm and XG Boost Algorithm. We were able to achieve the highest accuracy of 97.07% with the Light GBM Algorithm.
使用机器学习进行乳腺癌分类
人工确定乳腺癌需要花费大量时间,有时需要数周或数月,而且发病率和死亡率很高,而且可能涉及人为错误。及早确诊将有助于治疗这种疾病。因此,使用机器学习模型来确定乳腺癌,可以快速识别肿瘤。本研究的重点是早期确定乳腺癌的良性或恶性。借助乳腺癌数据集,该研究论文旨在通过群体图和热图产生更好的决策可视化模式。为了实现这一目标,我们使用了Light GBM计算,并进一步将我们的模型展示与其他现存的ML模型进行了对比,特别是逻辑回归、梯度增强算法、随机森林算法和XG增强算法。使用Light GBM算法,我们能够达到97.07%的最高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信