{"title":"La quimera de la objetividad algorítmica: dificultades del aprendizaje automático en el desarrollo de una noción no normativa de salud","authors":"Ariel Guersenzvaig Elisava, David Casacuberta","doi":"10.12795/iestscientia.2022.i01.03","DOIUrl":null,"url":null,"abstract":"Este ensayo explora si el aprendizaje automático, una subdisciplina de la inteligencia artificial, puede contribuir a desarrollar un acercamiento más objetivo al desarrollo y formulación de conceptos y descripciones, tomando como ejemplo el caso de la definición de salud. Para ello se aborda la teoría naturalista de la salud propuesta por Christopher Boorse y se la contrasta con una serie de posibilidades y problemas que pueden surgir al aplicar el aprendizaje automático a la formulación junto a esta teoría. En base al análisis se concluye que tanto el aprendizaje automático (tanto supervisado como no supervisado) arrastran elementos de normatividad y subjetividad que hacen inviable el desarrollo de conceptos y descripciones de manera neutra y objetiva. Esto no implica que el aprendizaje automático quede invalidado para el análisis evaluativo de la salud, sino que resalta y explicita los elementos subjetivos presentes en él.","PeriodicalId":194761,"journal":{"name":"IUS ET SCIENTIA","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUS ET SCIENTIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12795/iestscientia.2022.i01.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Este ensayo explora si el aprendizaje automático, una subdisciplina de la inteligencia artificial, puede contribuir a desarrollar un acercamiento más objetivo al desarrollo y formulación de conceptos y descripciones, tomando como ejemplo el caso de la definición de salud. Para ello se aborda la teoría naturalista de la salud propuesta por Christopher Boorse y se la contrasta con una serie de posibilidades y problemas que pueden surgir al aplicar el aprendizaje automático a la formulación junto a esta teoría. En base al análisis se concluye que tanto el aprendizaje automático (tanto supervisado como no supervisado) arrastran elementos de normatividad y subjetividad que hacen inviable el desarrollo de conceptos y descripciones de manera neutra y objetiva. Esto no implica que el aprendizaje automático quede invalidado para el análisis evaluativo de la salud, sino que resalta y explicita los elementos subjetivos presentes en él.