Efficient dense reconstruction using geometry and image consistency constraints

Mikhail M. Shashkov, J. Mak, S. Recker, Connie S. Nguyen, John Douglas Owens, K. Joy
{"title":"Efficient dense reconstruction using geometry and image consistency constraints","authors":"Mikhail M. Shashkov, J. Mak, S. Recker, Connie S. Nguyen, John Douglas Owens, K. Joy","doi":"10.1109/AIPR.2015.7444539","DOIUrl":null,"url":null,"abstract":"We introduce a method for creating very dense reconstructions of datasets, particularly turn-table varieties. The method takes in initial reconstructions (of any origin) and makes them denser by interpolating depth values in two-dimensional image space within a superpixel region and then optimizing the interpolated value via image consistency analysis across neighboring images in the dataset. One of the core assumptions in this method is that depth values per pixel will vary gradually along a gradient for a given object. As such, turntable datasets, such as the dinosaur dataset, are particularly easy for our method. Our method modernizes some existing techniques and parallelizes them on a GPU, which produces results faster than other densification methods.","PeriodicalId":440673,"journal":{"name":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"117 50","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2015.7444539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a method for creating very dense reconstructions of datasets, particularly turn-table varieties. The method takes in initial reconstructions (of any origin) and makes them denser by interpolating depth values in two-dimensional image space within a superpixel region and then optimizing the interpolated value via image consistency analysis across neighboring images in the dataset. One of the core assumptions in this method is that depth values per pixel will vary gradually along a gradient for a given object. As such, turntable datasets, such as the dinosaur dataset, are particularly easy for our method. Our method modernizes some existing techniques and parallelizes them on a GPU, which produces results faster than other densification methods.
使用几何和图像一致性约束的高效密集重建
我们介绍了一种创建非常密集的数据集重建的方法,特别是转盘品种。该方法采用初始重建(任何来源),并通过在超像素区域内的二维图像空间中插值深度值来使其更密集,然后通过对数据集中相邻图像的图像一致性分析来优化插值值。该方法的一个核心假设是,对于给定对象,每个像素的深度值将沿着梯度逐渐变化。因此,转盘数据集,如恐龙数据集,对我们的方法来说特别容易。我们的方法现代化了一些现有的技术,并在GPU上并行化,比其他致密化方法更快地产生结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信