Mikhail M. Shashkov, J. Mak, S. Recker, Connie S. Nguyen, John Douglas Owens, K. Joy
{"title":"Efficient dense reconstruction using geometry and image consistency constraints","authors":"Mikhail M. Shashkov, J. Mak, S. Recker, Connie S. Nguyen, John Douglas Owens, K. Joy","doi":"10.1109/AIPR.2015.7444539","DOIUrl":null,"url":null,"abstract":"We introduce a method for creating very dense reconstructions of datasets, particularly turn-table varieties. The method takes in initial reconstructions (of any origin) and makes them denser by interpolating depth values in two-dimensional image space within a superpixel region and then optimizing the interpolated value via image consistency analysis across neighboring images in the dataset. One of the core assumptions in this method is that depth values per pixel will vary gradually along a gradient for a given object. As such, turntable datasets, such as the dinosaur dataset, are particularly easy for our method. Our method modernizes some existing techniques and parallelizes them on a GPU, which produces results faster than other densification methods.","PeriodicalId":440673,"journal":{"name":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"117 50","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2015.7444539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We introduce a method for creating very dense reconstructions of datasets, particularly turn-table varieties. The method takes in initial reconstructions (of any origin) and makes them denser by interpolating depth values in two-dimensional image space within a superpixel region and then optimizing the interpolated value via image consistency analysis across neighboring images in the dataset. One of the core assumptions in this method is that depth values per pixel will vary gradually along a gradient for a given object. As such, turntable datasets, such as the dinosaur dataset, are particularly easy for our method. Our method modernizes some existing techniques and parallelizes them on a GPU, which produces results faster than other densification methods.