Sirinda Palahan, Domagoj Babic, Swarat Chaudhuri, Daniel Kifer
{"title":"Extraction of statistically significant malware behaviors","authors":"Sirinda Palahan, Domagoj Babic, Swarat Chaudhuri, Daniel Kifer","doi":"10.1145/2523649.2523659","DOIUrl":null,"url":null,"abstract":"Traditionally, analysis of malicious software is only a semi-automated process, often requiring a skilled human analyst. As new malware appears at an increasingly alarming rate --- now over 100 thousand new variants each day --- there is a need for automated techniques for identifying suspicious behavior in programs. In this paper, we propose a method for extracting statistically significant malicious behaviors from a system call dependency graph (obtained by running a binary executable in a sandbox). Our approach is based on a new method for measuring the statistical significance of subgraphs. Given a training set of graphs from two classes (e.g., goodware and malware system call dependency graphs), our method can assign p-values to subgraphs of new graph instances even if those subgraphs have not appeared before in the training data (thus possibly capturing new behaviors or disguised versions of existing behaviors).","PeriodicalId":127404,"journal":{"name":"Proceedings of the 29th Annual Computer Security Applications Conference","volume":"119 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2523649.2523659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Traditionally, analysis of malicious software is only a semi-automated process, often requiring a skilled human analyst. As new malware appears at an increasingly alarming rate --- now over 100 thousand new variants each day --- there is a need for automated techniques for identifying suspicious behavior in programs. In this paper, we propose a method for extracting statistically significant malicious behaviors from a system call dependency graph (obtained by running a binary executable in a sandbox). Our approach is based on a new method for measuring the statistical significance of subgraphs. Given a training set of graphs from two classes (e.g., goodware and malware system call dependency graphs), our method can assign p-values to subgraphs of new graph instances even if those subgraphs have not appeared before in the training data (thus possibly capturing new behaviors or disguised versions of existing behaviors).