Detection of False Data Injection Attack Using Graph Signal Processing for the Power Grid

Raksha Ramakrishna, A. Scaglione
{"title":"Detection of False Data Injection Attack Using Graph Signal Processing for the Power Grid","authors":"Raksha Ramakrishna, A. Scaglione","doi":"10.1109/GlobalSIP45357.2019.8969373","DOIUrl":null,"url":null,"abstract":"In this paper we revisit the problem of False Data Injection (FDI) attacks to electric power systems synchrophasors measurements through the lens of graph signal processing (GSP). First, we introduce a physics based model that supports the empirical evidence that Phasor Measurement Unit (PMU) data are low-pass graph signals. This insight is used to investigate how one can leverage such a structure to construct more effective bad data detection (BDD) algorithms that can detect FDI attack signatures through appropriate utilization of the features of the PMU graph-signal.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper we revisit the problem of False Data Injection (FDI) attacks to electric power systems synchrophasors measurements through the lens of graph signal processing (GSP). First, we introduce a physics based model that supports the empirical evidence that Phasor Measurement Unit (PMU) data are low-pass graph signals. This insight is used to investigate how one can leverage such a structure to construct more effective bad data detection (BDD) algorithms that can detect FDI attack signatures through appropriate utilization of the features of the PMU graph-signal.
基于图信号处理的电网虚假数据注入攻击检测
本文通过图信号处理(GSP)的视角,重新研究了电力系统同步量测量中的虚假数据注入(FDI)攻击问题。首先,我们引入了一个基于物理的模型,该模型支持相量测量单元(PMU)数据是低通图形信号的经验证据。这一见解用于研究如何利用这种结构来构建更有效的坏数据检测(BDD)算法,该算法可以通过适当利用PMU图形信号的特征来检测FDI攻击签名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信