Adaptations of Explainable Artificial Intelligence (XAI) to Agricultural Data Models with ELI5, PDPbox, and Skater using Diverse Agricultural Worker Data

Shinji Kawakura, M. Hirafuji, S. Ninomiya, R. Shibasaki
{"title":"Adaptations of Explainable Artificial Intelligence (XAI) to Agricultural Data Models with ELI5, PDPbox, and Skater using Diverse Agricultural Worker Data","authors":"Shinji Kawakura, M. Hirafuji, S. Ninomiya, R. Shibasaki","doi":"10.24018/ejai.2022.1.3.14","DOIUrl":null,"url":null,"abstract":"We use explainable artificial intelligence (XAI) based on Explain Like I’m 5 (ELI5), Partial Dependency Plot box (PDPbox), and Skater to analyze diverse physical agricultural (agri-) worker datasets. We have developed various promising body-sensing systems to enhance agri-technical advancement, training and worker development, and security. This includes wearable sensing systems (WSSs) that can capture real-time three-axis acceleration and angular velocity data related to agri-worker motion by analyzing human dynamics and statistics in different agri-environments, such as fields, meadows, and gardens. After investigating the obtained time-series data using a novel program written in Python, we discuss our findings and recommendations with real agri-workers and managers. In this study, we use XAI and visualization to analyze diverse data of experienced and inexperienced agri-workers to develop an applied method for agri-directors to train agri-workers.","PeriodicalId":360205,"journal":{"name":"European Journal of Artificial Intelligence and Machine Learning","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Artificial Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejai.2022.1.3.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We use explainable artificial intelligence (XAI) based on Explain Like I’m 5 (ELI5), Partial Dependency Plot box (PDPbox), and Skater to analyze diverse physical agricultural (agri-) worker datasets. We have developed various promising body-sensing systems to enhance agri-technical advancement, training and worker development, and security. This includes wearable sensing systems (WSSs) that can capture real-time three-axis acceleration and angular velocity data related to agri-worker motion by analyzing human dynamics and statistics in different agri-environments, such as fields, meadows, and gardens. After investigating the obtained time-series data using a novel program written in Python, we discuss our findings and recommendations with real agri-workers and managers. In this study, we use XAI and visualization to analyze diverse data of experienced and inexperienced agri-workers to develop an applied method for agri-directors to train agri-workers.
基于ELI5、PDPbox和Skater的可解释人工智能(XAI)对农业数据模型的适应性研究
我们使用基于Explain Like I 'm 5 (ELI5)、Partial Dependency Plot box (PDPbox)和Skater的可解释人工智能(XAI)来分析各种物理农业(agri-)工人数据集。我们开发了各种有前途的身体传感系统,以促进农业技术进步、培训和工人发展以及安全。这包括可穿戴传感系统(wss),它可以通过分析不同农业环境(如田地、草地和花园)中的人体动力学和统计数据,捕获与农业工人运动相关的实时三轴加速度和角速度数据。在使用Python编写的新程序调查获得的时间序列数据后,我们与真正的农业工人和管理人员讨论了我们的发现和建议。在本研究中,我们使用XAI和可视化分析不同的数据,有经验和没有经验的农业工人,以开发一种适用于农业主管培训农业工人的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信