Design and Implementation of Parallel FFT on CUDA

Xueqin Zhang, K. Shen, Cheng-Hai Xu, K. Wang
{"title":"Design and Implementation of Parallel FFT on CUDA","authors":"Xueqin Zhang, K. Shen, Cheng-Hai Xu, K. Wang","doi":"10.1109/DASC.2013.130","DOIUrl":null,"url":null,"abstract":"Fast Fourier Transform (FFT) algorithm has an important role in the image processing and scientific computing, and it's a highly parallel divide-and-conquer algorithm. In this paper, we exploited the Compute Unified Device Architecture CUDA technology and contemporary graphics processing units (GPUs) to achieve higher performance. We focused on two aspects to optimize the ordinary FFT algorithm, multi-threaded parallelism and memory hierarchy. We also proposed parallelism optimization strategies when the data volume occurs and predicted the possible situation when the amount of data increased further.it can be seen from the results that Parallel FFT algorithm is more efficient than the ordinary FFT algorithm.","PeriodicalId":179557,"journal":{"name":"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2013.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fast Fourier Transform (FFT) algorithm has an important role in the image processing and scientific computing, and it's a highly parallel divide-and-conquer algorithm. In this paper, we exploited the Compute Unified Device Architecture CUDA technology and contemporary graphics processing units (GPUs) to achieve higher performance. We focused on two aspects to optimize the ordinary FFT algorithm, multi-threaded parallelism and memory hierarchy. We also proposed parallelism optimization strategies when the data volume occurs and predicted the possible situation when the amount of data increased further.it can be seen from the results that Parallel FFT algorithm is more efficient than the ordinary FFT algorithm.
并行FFT在CUDA上的设计与实现
快速傅里叶变换(FFT)算法是一种高度并行的分治算法,在图像处理和科学计算中有着重要的作用。在本文中,我们利用计算统一设备架构CUDA技术和现代图形处理单元(gpu)来实现更高的性能。我们主要从多线程并行性和内存层次两个方面对普通FFT算法进行优化。提出了数据量大时的并行优化策略,并预测了数据量进一步增加时可能出现的情况。从结果可以看出,并行FFT算法比普通FFT算法效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信