Deconstructing Diffusion on Tumblr: Structural and Temporal Aspects

N. Alrajebah, L. Carr, Markus Luczak-Rösch, T. Tiropanis
{"title":"Deconstructing Diffusion on Tumblr: Structural and Temporal Aspects","authors":"N. Alrajebah, L. Carr, Markus Luczak-Rösch, T. Tiropanis","doi":"10.1145/3091478.3091491","DOIUrl":null,"url":null,"abstract":"Online social networks enable collectives of users to create and share content at scale. The diffusion of content through the network, and the resulting information cascades, are phenomena that have been widely investigated on various platforms, which facilitate information diffusion using diverse technical mechanisms, user interfaces and incentives. This paper focuses on Tumblr, an online microblogging social network with a core 'reblogging' functionality that allows information to diffuse across its network by appearing on multiple user blogs. The formation of any cascade network is visible as a list of reblogging events attached as notes to each appearance of the post in the cascade. In this paper, we examine cascade networks on Tumblr, recreated from the series of diffusion events, and analyse them from structural and temporal perspectives. To achieve this, we utilise a cascade construction model that create cascade networks, overcoming problems of a lack of contextual information and missing/degraded data. Finally, we compare cascades in Tumblr with those appearing on other social network platforms. Our analysis shows that popular content on Tumblr creates 'large' cascades that are deep, branching into a large number of separate and long paths, having a consistent number of reblogs at each depth and at each given time.","PeriodicalId":165747,"journal":{"name":"Proceedings of the 2017 ACM on Web Science Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3091478.3091491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Online social networks enable collectives of users to create and share content at scale. The diffusion of content through the network, and the resulting information cascades, are phenomena that have been widely investigated on various platforms, which facilitate information diffusion using diverse technical mechanisms, user interfaces and incentives. This paper focuses on Tumblr, an online microblogging social network with a core 'reblogging' functionality that allows information to diffuse across its network by appearing on multiple user blogs. The formation of any cascade network is visible as a list of reblogging events attached as notes to each appearance of the post in the cascade. In this paper, we examine cascade networks on Tumblr, recreated from the series of diffusion events, and analyse them from structural and temporal perspectives. To achieve this, we utilise a cascade construction model that create cascade networks, overcoming problems of a lack of contextual information and missing/degraded data. Finally, we compare cascades in Tumblr with those appearing on other social network platforms. Our analysis shows that popular content on Tumblr creates 'large' cascades that are deep, branching into a large number of separate and long paths, having a consistent number of reblogs at each depth and at each given time.
解构Tumblr上的扩散:结构和时间方面
在线社交网络使用户群体能够大规模地创建和共享内容。内容通过网络的扩散以及由此产生的信息级联是在各种平台上广泛研究的现象,这些平台利用各种技术机制、用户界面和激励措施促进信息扩散。本文关注的是Tumblr,这是一个在线微博社交网络,其核心功能是“转发”,允许信息通过出现在多个用户博客上而在其网络中传播。任何级联网络的形成都可以看作是一个转发事件列表,它以注释的形式附加在级联中的每个帖子上。在本文中,我们研究了Tumblr上的级联网络,从一系列扩散事件中重建,并从结构和时间角度分析它们。为了实现这一目标,我们利用级联构建模型来创建级联网络,克服缺乏上下文信息和丢失/降级数据的问题。最后,我们将Tumblr中的瀑布与其他社交网络平台上的瀑布进行了比较。我们的分析显示,Tumblr上的热门内容创造了“大”级联,这些级联很深,分支成大量独立的长路径,在每个深度和每个给定时间都有一致的转发数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信