{"title":"Detecting unintentional information leakage in social media news comments","authors":"I. Yahav, D. Schwartz, Gahl Silverman","doi":"10.1109/IRI.2014.7051874","DOIUrl":null,"url":null,"abstract":"This paper is concerned with unintentional information leakage (UIL) through social networks, and in particular, Facebook Organizations often use forms of self censorship in order to maintain security. Non-identification of individuals, products, or places is seen as a sufficient means of information protection. A prime example is the replacement of a name with a supposedly non-identifying initial. This has traditionally been effective in obfuscating the identity of military personnel, protected witnesses, minors, victims or suspects who need to be granted a level of protection through anonymity. We challenge the effectiveness of this form of censorship in light of current uses and ongoing developments in Social Networks showing that name-obfits cation mandated by court or military order can be systematically compromised through the unintentional actions of public social network commenters. We propose a qualitative method for recognition and characterization of UIL followed by a quantitative study that automatically detects UIL comments.","PeriodicalId":360013,"journal":{"name":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2014.7051874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper is concerned with unintentional information leakage (UIL) through social networks, and in particular, Facebook Organizations often use forms of self censorship in order to maintain security. Non-identification of individuals, products, or places is seen as a sufficient means of information protection. A prime example is the replacement of a name with a supposedly non-identifying initial. This has traditionally been effective in obfuscating the identity of military personnel, protected witnesses, minors, victims or suspects who need to be granted a level of protection through anonymity. We challenge the effectiveness of this form of censorship in light of current uses and ongoing developments in Social Networks showing that name-obfits cation mandated by court or military order can be systematically compromised through the unintentional actions of public social network commenters. We propose a qualitative method for recognition and characterization of UIL followed by a quantitative study that automatically detects UIL comments.