C. Song, S. Azimuudin, Byungje Lee, F. Harackiewicz, M. Yen, D. Ralu, A. Hoffman, Pingshan Wang
{"title":"Microwave Dielectric Properties of On-Chip Liquid Films","authors":"C. Song, S. Azimuudin, Byungje Lee, F. Harackiewicz, M. Yen, D. Ralu, A. Hoffman, Pingshan Wang","doi":"10.1109/LSSA.2006.250401","DOIUrl":null,"url":null,"abstract":"A microwave characterization method for on-chip liquid film dielectric property measurement is developed. Microstrip-line based on-chip test structures are fabricated to characterize the microwave dielectric properties of various on-chip liquid films: DI water and binary mixtures of DI water with glucose and ethanol. The obtained microwave dielectric properties are presented in Cole-Cole diagrams, which show general frequency dependence similar to that of bulk liquids. Different concentration levels of glucose and ethanol show different microwave dielectric responses. Therefore, on-chip microwave dielectric spectroscopy provides a promising and inexpensive on-chip sensing mechanism for biomedical and chemical applications","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A microwave characterization method for on-chip liquid film dielectric property measurement is developed. Microstrip-line based on-chip test structures are fabricated to characterize the microwave dielectric properties of various on-chip liquid films: DI water and binary mixtures of DI water with glucose and ethanol. The obtained microwave dielectric properties are presented in Cole-Cole diagrams, which show general frequency dependence similar to that of bulk liquids. Different concentration levels of glucose and ethanol show different microwave dielectric responses. Therefore, on-chip microwave dielectric spectroscopy provides a promising and inexpensive on-chip sensing mechanism for biomedical and chemical applications