Hybrid Quantum-Classical Autoencoders for End-to-End Radio Communication

Zsolt Tabi, Bence Bako, Dániel T. R. Nagy, Péter Vaderna, Zsófia Kallus, Péter Hága, Z. Zimborás
{"title":"Hybrid Quantum-Classical Autoencoders for End-to-End Radio Communication","authors":"Zsolt Tabi, Bence Bako, Dániel T. R. Nagy, Péter Vaderna, Zsófia Kallus, Péter Hága, Z. Zimborás","doi":"10.1109/SEC54971.2022.00071","DOIUrl":null,"url":null,"abstract":"Quantum neural networks are emerging as poten-tial candidates to leverage noisy quantum processing units for applications. Here we introduce hybrid quantum-classical au-to encoders for end-to-end radio communication. In the physical layer of classical wireless systems, we study the performance of simulated architectures for standard encoded radio signals over a noisy channel. We implement a hybrid model, where a quantum decoder in the receiver works with a classical encoder in the transmitter part. Besides learning a latent space representation of the input symbols with good robustness against signal degradation, a generalized data re-uploading scheme for the qubit-based circuits allows to meet inference-time constraints of the application.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum neural networks are emerging as poten-tial candidates to leverage noisy quantum processing units for applications. Here we introduce hybrid quantum-classical au-to encoders for end-to-end radio communication. In the physical layer of classical wireless systems, we study the performance of simulated architectures for standard encoded radio signals over a noisy channel. We implement a hybrid model, where a quantum decoder in the receiver works with a classical encoder in the transmitter part. Besides learning a latent space representation of the input symbols with good robustness against signal degradation, a generalized data re-uploading scheme for the qubit-based circuits allows to meet inference-time constraints of the application.
端到端无线电通信的混合量子经典自编码器
量子神经网络正在成为利用噪声量子处理单元进行应用的潜在候选者。本文介绍了用于端到端无线电通信的混合量子-经典au-to编码器。在经典无线系统的物理层,我们研究了标准编码无线电信号在噪声信道上的模拟体系结构的性能。我们实现了一个混合模型,其中接收器中的量子解码器与发射器部分的经典编码器一起工作。除了学习对信号退化具有良好鲁棒性的输入符号的潜在空间表示外,基于量子比特的电路的广义数据重上传方案允许满足应用程序的推理时间约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信