Chronica: A Data-Imbalance-Aware Scheduler for Distributed Deep Learning

Sanha Maeng, G. Moon, Sungyong Park
{"title":"Chronica: A Data-Imbalance-Aware Scheduler for Distributed Deep Learning","authors":"Sanha Maeng, G. Moon, Sungyong Park","doi":"10.1109/CCGrid57682.2023.00033","DOIUrl":null,"url":null,"abstract":"One of the major challenges in distributed deep learning is attenuating straggler problem. The straggler increases synchronization latency and significantly inhibits the convergence of deep learning model. We empirically observe that the imbal-anced data samples worsen the straggler problem and make the convergence of the deep learning model slower. However, existing approaches such as BOA and EP4DDL have not addressed data imbalance issues while solving the straggler problem. To overcome the straggler and data imbalance problems, we propose Chronica,a new data-imbalance-aware scheduler. Based on the size of the data samples and the configuration of each worker, Chronicaelaborately predicts the training time required for each worker. Chronicathen provides equivalent training time to each of the workers, alleviating both step- and epoch-level straggler problems. Furthermore, Chronicasuggests a new parameter synchronization scheme to achieve fast convergence based on the weighted average of the training workload on each worker. Our extensive evaluation using four deep learning models on 32 Amazon EC2 GPU instances showed that the new Chronicaachieves up to 3.19 times speedup over the state-of-the-art systems.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the major challenges in distributed deep learning is attenuating straggler problem. The straggler increases synchronization latency and significantly inhibits the convergence of deep learning model. We empirically observe that the imbal-anced data samples worsen the straggler problem and make the convergence of the deep learning model slower. However, existing approaches such as BOA and EP4DDL have not addressed data imbalance issues while solving the straggler problem. To overcome the straggler and data imbalance problems, we propose Chronica,a new data-imbalance-aware scheduler. Based on the size of the data samples and the configuration of each worker, Chronicaelaborately predicts the training time required for each worker. Chronicathen provides equivalent training time to each of the workers, alleviating both step- and epoch-level straggler problems. Furthermore, Chronicasuggests a new parameter synchronization scheme to achieve fast convergence based on the weighted average of the training workload on each worker. Our extensive evaluation using four deep learning models on 32 Amazon EC2 GPU instances showed that the new Chronicaachieves up to 3.19 times speedup over the state-of-the-art systems.
Chronica:分布式深度学习的数据不平衡感知调度器
分布式深度学习面临的主要挑战之一是离散问题的衰减。离散子增加了同步延迟,显著抑制了深度学习模型的收敛性。我们的经验观察到,不平衡的数据样本加剧了离散问题,使深度学习模型的收敛速度变慢。然而,现有的方法,如BOA和EP4DDL,在解决掉队问题的同时,并没有解决数据不平衡问题。为了克服离散和数据不平衡问题,我们提出了一种新的数据不平衡感知调度程序Chronica。根据数据样本的大小和每个工人的配置,chronica精心预测每个工人所需的培训时间。为每个工人提供同等的培训时间,减轻了台阶级和时代级的掉队问题。在此基础上,提出了一种基于每个工人训练工作量加权平均的参数同步方案,以实现快速收敛。我们在32个Amazon EC2 GPU实例上使用四种深度学习模型进行了广泛的评估,结果表明,与最先进的系统相比,新的chrona7的加速速度高达3.19倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信