A Scalable Heterogeneous Dataflow Architecture For Big Data Analytics Using FPGAs (Abstract Only)

Ehsan Ghasemi, P. Chow
{"title":"A Scalable Heterogeneous Dataflow Architecture For Big Data Analytics Using FPGAs (Abstract Only)","authors":"Ehsan Ghasemi, P. Chow","doi":"10.1145/2847263.2847294","DOIUrl":null,"url":null,"abstract":"Due to rapidly expanding data size, there is increasing need for scalable, high-performance, and low-energy frameworks for large- scale data computation. We build a dataflow architecture that harnesses FPGA resources within a distributed analytics platform creating a heterogeneous data analytics framework. This approach leverages the scalability of existing distributed processing environments and provides easy access to custom hardware accelerators for large-scale data analysis. We prototype our framework within the Apache Spark analytics tool running on a CPU-FPGA heterogeneous cluster. As a specific application case study, we have chosen the MapReduce paradigm to implement a multi-purpose, scalable, and customizable RTL accelerator inside the FPGA, capable of incorporating custom High-Level Synthesis (HLS) MapReduce kernels. We demonstrate how a typical MapReduce application can be simply adapted to our distributed framework while retaining the scalability of the Spark platform.","PeriodicalId":438572,"journal":{"name":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2847263.2847294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Due to rapidly expanding data size, there is increasing need for scalable, high-performance, and low-energy frameworks for large- scale data computation. We build a dataflow architecture that harnesses FPGA resources within a distributed analytics platform creating a heterogeneous data analytics framework. This approach leverages the scalability of existing distributed processing environments and provides easy access to custom hardware accelerators for large-scale data analysis. We prototype our framework within the Apache Spark analytics tool running on a CPU-FPGA heterogeneous cluster. As a specific application case study, we have chosen the MapReduce paradigm to implement a multi-purpose, scalable, and customizable RTL accelerator inside the FPGA, capable of incorporating custom High-Level Synthesis (HLS) MapReduce kernels. We demonstrate how a typical MapReduce application can be simply adapted to our distributed framework while retaining the scalability of the Spark platform.
基于fpga的大数据分析可扩展异构数据流架构(仅抽象)
由于数据量的快速增长,对大规模数据计算的可伸缩、高性能和低能耗框架的需求日益增加。我们构建了一个数据流架构,利用分布式分析平台内的FPGA资源创建异构数据分析框架。这种方法利用了现有分布式处理环境的可伸缩性,并为大规模数据分析提供了对定制硬件加速器的方便访问。我们在运行在CPU-FPGA异构集群上的Apache Spark分析工具中原型化我们的框架。作为一个特定的应用案例研究,我们选择了MapReduce范例来实现FPGA内部的多用途、可扩展和可定制的RTL加速器,能够结合定制的高级合成(HLS) MapReduce内核。我们将演示一个典型的MapReduce应用程序如何简单地适应我们的分布式框架,同时保留Spark平台的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信