Job sequencing and inventory control for a parallel machine problem: a hybrid-GA approach

J. Joines, C. Culbreth
{"title":"Job sequencing and inventory control for a parallel machine problem: a hybrid-GA approach","authors":"J. Joines, C. Culbreth","doi":"10.1109/CEC.1999.782550","DOIUrl":null,"url":null,"abstract":"In general, scheduling and sequencing problems are very difficult to solve to optimality (i.e., most problems are NP-Complete). In some instances, machines produce batch quantities of products which are placed in inventories. Demands are allocated directly from these inventories if available. If current inventory levels can not satisfy the demands and associated due dates, outsourcing some of the product, generally at a premium price offers a way to meet all due dates. Scheduling to meet due-dates coupled with inventory control is an important and more complex problem than the general scheduling problem. One application arises in furniture manufacturing where the lumber used to make furniture must first be dried from green lumber in a series of parallel batch machines (kilns). Drying lumber in-house is less expensive than purchasing commercially kiln-dried lumber. Therefore, the objective is to minimize the sum of the costs of drying lumber in-house and purchasing kiln-dried lumber in order to meet all due-dates plus any inventory carrying costs incurred over the planning horizon. The problem is decomposed into two sub problems: (1) the sequencing of the product types (lumber) on the machines (kilns); and (2) the allocation of inventory to satisfy the demands. A hybrid genetic algorithm determines the best sequence of product types to produce and an embedded linear program determines the optimal allocation of inventory and quantity of outsourced lumber that minimizes total cost. The hybrid algorithm is shown to be effective at solving the problem.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.782550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In general, scheduling and sequencing problems are very difficult to solve to optimality (i.e., most problems are NP-Complete). In some instances, machines produce batch quantities of products which are placed in inventories. Demands are allocated directly from these inventories if available. If current inventory levels can not satisfy the demands and associated due dates, outsourcing some of the product, generally at a premium price offers a way to meet all due dates. Scheduling to meet due-dates coupled with inventory control is an important and more complex problem than the general scheduling problem. One application arises in furniture manufacturing where the lumber used to make furniture must first be dried from green lumber in a series of parallel batch machines (kilns). Drying lumber in-house is less expensive than purchasing commercially kiln-dried lumber. Therefore, the objective is to minimize the sum of the costs of drying lumber in-house and purchasing kiln-dried lumber in order to meet all due-dates plus any inventory carrying costs incurred over the planning horizon. The problem is decomposed into two sub problems: (1) the sequencing of the product types (lumber) on the machines (kilns); and (2) the allocation of inventory to satisfy the demands. A hybrid genetic algorithm determines the best sequence of product types to produce and an embedded linear program determines the optimal allocation of inventory and quantity of outsourced lumber that minimizes total cost. The hybrid algorithm is shown to be effective at solving the problem.
并行机器的作业排序和库存控制:一种混合遗传算法
一般来说,调度和排序问题很难达到最优性(即大多数问题是np完全的)。在某些情况下,机器生产成批数量的产品,这些产品被放入库存中。如果有需求,直接从这些库存中分配。如果当前的库存水平不能满足需求和相关的到期日,外包一些产品,通常以溢价提供一种满足所有到期日的方法。与库存控制相结合的交货期调度问题是一个比一般调度问题更为重要和复杂的问题。一种应用出现在家具制造中,用于制造家具的木材必须首先在一系列平行批处理机器(窑)中从未加工木材中干燥。室内干燥木材比购买商业窑干木材便宜。因此,目标是尽量减少室内干燥木材和购买窑干木材的费用总和,以便满足所有到期日期以及在规划期间产生的任何库存持有费用。该问题分解为两个子问题:(1)机器(窑)上产品类型(木材)的排序;(2)配置满足需求的库存。混合遗传算法确定生产产品类型的最佳顺序,嵌入式线性程序确定库存和外包木材数量的最佳分配,从而使总成本最小化。混合算法在求解该问题上是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信