Robust Singular Value Decomposition Algorithm for Unique Faces

I. Patel, R. Kulkarni, D. N. Rao
{"title":"Robust Singular Value Decomposition Algorithm for Unique Faces","authors":"I. Patel, R. Kulkarni, D. N. Rao","doi":"10.24297/ijct.v4i2c1.4178","DOIUrl":null,"url":null,"abstract":"It has been read and also seen by physical encounters that there found to be seven near resembling humans by appearance .Many a times one becomes confused with respect to identification of  such near resembling faces when one encounters them. The  recognition  of  familiar  faces  plays  a  fundamental  role  in  our  social interactions. Humans  are  able  to  identify  reliably  a  large  number  of  faces  and psychologists  are  interested  in  understanding  the  perceptual  and  cognitive mechanisms  at  the  base  of  the  face  recognition  process. As it is needed that an automated face recognition system should be faces specific, it should effectively use features that discriminate a face from others by preferably amplifying distinctive characteristics of face. Face recognition has drawn wide attention from researchers in areas of machine learning, computer vision, pattern recognition, neural networks, access control, information security, law enforcement and surveillance, smart cards etc. The paper shows that the most resembling faces can be recognized by having a unique value per face under different variations. Certain image transformations, such as intensity negation, strange viewpoint changes,  and  changes  in  lighting  direction  can  severely  disrupt  human  face recognition. It has been said again and again by research scholars that SVD algorithm is not good enough to classify faces under large variations but this paper proves that the SVD algorithm is most robust algorithm and can be proved effective in identifying faces under large variations as applicable to unique faces. This paper works on these aspects and tries to recognize the unique faces by applying optimized SVD algorithm.","PeriodicalId":161820,"journal":{"name":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/ijct.v4i2c1.4178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It has been read and also seen by physical encounters that there found to be seven near resembling humans by appearance .Many a times one becomes confused with respect to identification of  such near resembling faces when one encounters them. The  recognition  of  familiar  faces  plays  a  fundamental  role  in  our  social interactions. Humans  are  able  to  identify  reliably  a  large  number  of  faces  and psychologists  are  interested  in  understanding  the  perceptual  and  cognitive mechanisms  at  the  base  of  the  face  recognition  process. As it is needed that an automated face recognition system should be faces specific, it should effectively use features that discriminate a face from others by preferably amplifying distinctive characteristics of face. Face recognition has drawn wide attention from researchers in areas of machine learning, computer vision, pattern recognition, neural networks, access control, information security, law enforcement and surveillance, smart cards etc. The paper shows that the most resembling faces can be recognized by having a unique value per face under different variations. Certain image transformations, such as intensity negation, strange viewpoint changes,  and  changes  in  lighting  direction  can  severely  disrupt  human  face recognition. It has been said again and again by research scholars that SVD algorithm is not good enough to classify faces under large variations but this paper proves that the SVD algorithm is most robust algorithm and can be proved effective in identifying faces under large variations as applicable to unique faces. This paper works on these aspects and tries to recognize the unique faces by applying optimized SVD algorithm.
独特人脸的鲁棒奇异值分解算法
我们读到过,也亲眼看到过,有七个人在外表上与人类相似。很多时候,当人们遇到他们时,人们会对识别感到困惑ofÂ如此相似的面孔。The recognition of familiar faces plays a fundamental role in ourÂ社会互动。Humans are able to identify reliably a large number of facesÂ和psychologists are interested in understanding the perceptual andÂ认知mechanisms at the base of the face recognitionÂ过程。由于需要自动人脸识别系统应该是特定于人脸的,因此它应该通过更好地放大人脸的显著特征来有效地利用区分人脸的特征。人脸识别已经引起了机器学习、计算机视觉、模式识别、神经网络、访问控制、信息安全、执法监控、智能卡等领域研究人员的广泛关注。本文表明,在不同的变化条件下,每张脸都有一个唯一的值,可以识别出最相似的脸。某些图像变换,如强度否定,奇怪的视点变化, and changes in lighting direction can severely disrupt humanÂ人脸识别。研究学者们一再指出,SVD算法对于大变化情况下的人脸分类不够好,但本文证明了SVD算法是最鲁棒的算法,适用于唯一的人脸,可以有效识别大变化情况下的人脸。本文从这些方面进行了研究,并尝试采用优化的奇异值分解算法进行独特人脸的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信