{"title":"Learning Pinball TWSVM efficiently using Privileged Information and their applications","authors":"R. Rastogi, Aman Pal, Suresh Chandra","doi":"10.37256/rrcs.1120211325","DOIUrl":null,"url":null,"abstract":"In any learning framework, an expert knowledge always plays a crucial role. But, in the field of machine learning, the knowledge offered by an expert is rarely used. Moreover, machine learning algorithms (SVM based) generally use hinge loss function which is sensitive towards the noise. Thus, in order to get the advantage from an expert knowledge and to reduce the sensitivity towards the noise, in this paper, we propose a fast and novel Twin Support Vector Machine classifier based on privileged information with pinball loss function which has been termed as Pin-TWSVMPI where expert's knowledge is in the form of privileged information. The proposed Pin-TWSVMPI incorporates privileged information by using correcting function so as to obtain two nonparallel decision hyperplanes. Further, in order to make computations more efficient and fast, we use Sequential Minimal Optimization (SMO) technique for obtaining the classifier and have also shown its application for Pedestrian detection and Handwritten digit recognition. Further, for UCI datasets, we first implement a procedure which extracts privileged information from the features of the dataset which are then further utilized by Pin-TWSVMPI to which lead to enhancement in classification accuracy with comparatively lesser computational time.","PeriodicalId":377142,"journal":{"name":"Research Reports on Computer Science","volume":"373 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Reports on Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/rrcs.1120211325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In any learning framework, an expert knowledge always plays a crucial role. But, in the field of machine learning, the knowledge offered by an expert is rarely used. Moreover, machine learning algorithms (SVM based) generally use hinge loss function which is sensitive towards the noise. Thus, in order to get the advantage from an expert knowledge and to reduce the sensitivity towards the noise, in this paper, we propose a fast and novel Twin Support Vector Machine classifier based on privileged information with pinball loss function which has been termed as Pin-TWSVMPI where expert's knowledge is in the form of privileged information. The proposed Pin-TWSVMPI incorporates privileged information by using correcting function so as to obtain two nonparallel decision hyperplanes. Further, in order to make computations more efficient and fast, we use Sequential Minimal Optimization (SMO) technique for obtaining the classifier and have also shown its application for Pedestrian detection and Handwritten digit recognition. Further, for UCI datasets, we first implement a procedure which extracts privileged information from the features of the dataset which are then further utilized by Pin-TWSVMPI to which lead to enhancement in classification accuracy with comparatively lesser computational time.