{"title":"A Comparison of North American Electronics Recycling Systems","authors":"J. Gregory, R. Kirchain","doi":"10.1109/ISEE.2007.369399","DOIUrl":null,"url":null,"abstract":"A framework for evaluating the economic performance of a recycling system is proposed and data from four electronics recycling systems in North America (Alberta, California, Maine, and Maryland) that use different operating models are used as a preliminary test of the framework. The framework is built around a hierarchy of descriptors that clarify the function of the system components under consideration and the activities, cash flow elements, and resources within those functions; costs are incurred by specific stakeholders. Data from each system on fee and mass collection amounts and collection, processing, and management costs are used to create a matrix of several net costs for stakeholders within each system. The framework and the net cost matrices add clarity to the way stakeholders economically interact in a recycling system, the types of costs they incur, and the activities that drive those costs. Although all four systems are relatively new, thereby making data collection a challenge, some preliminary insights can be gleaned from comparing the systems. Processing costs vary significantly in the four systems, with Alberta and California having the highest reimbursement rates for processing. Alberta and California also have relatively high system management costs, but processors are generally quite satisfied with the systems. Maine has an additional cost for consolidation that is an implicit management cost because of the need to count incoming products by manufacturer.","PeriodicalId":275164,"journal":{"name":"Proceedings of the 2007 IEEE International Symposium on Electronics and the Environment","volume":"202 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 IEEE International Symposium on Electronics and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEE.2007.369399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
A framework for evaluating the economic performance of a recycling system is proposed and data from four electronics recycling systems in North America (Alberta, California, Maine, and Maryland) that use different operating models are used as a preliminary test of the framework. The framework is built around a hierarchy of descriptors that clarify the function of the system components under consideration and the activities, cash flow elements, and resources within those functions; costs are incurred by specific stakeholders. Data from each system on fee and mass collection amounts and collection, processing, and management costs are used to create a matrix of several net costs for stakeholders within each system. The framework and the net cost matrices add clarity to the way stakeholders economically interact in a recycling system, the types of costs they incur, and the activities that drive those costs. Although all four systems are relatively new, thereby making data collection a challenge, some preliminary insights can be gleaned from comparing the systems. Processing costs vary significantly in the four systems, with Alberta and California having the highest reimbursement rates for processing. Alberta and California also have relatively high system management costs, but processors are generally quite satisfied with the systems. Maine has an additional cost for consolidation that is an implicit management cost because of the need to count incoming products by manufacturer.