Category Classification of Deformable Object using Hybrid Dynamic Model for Robotic Grasping

Yew Cheong Hou, K. Sahari, Tze How Dickson Neoh, Yeng Weng Leong
{"title":"Category Classification of Deformable Object using Hybrid Dynamic Model for Robotic Grasping","authors":"Yew Cheong Hou, K. Sahari, Tze How Dickson Neoh, Yeng Weng Leong","doi":"10.1109/CRC.2019.00021","DOIUrl":null,"url":null,"abstract":"This work studies the problem of classification of a hung garment in the unfolding procedure by a home service robot. The sheer number of unpredictable configurations that the deformable object can end up in makes the visual identification of the object shape and size difficult. In this paper, we propose a hybrid dynamic model to recognize the pose of hung garment using a single manipulator. A dataset of hung garment is generated by capturing the depth images of real garments at the robotic platform (real images) and also the images of garment mesh model from offline simulation (synthetic images) respectively. Deep convolutional neural network is implemented to classify the category and estimate the pose of garment. Experiment results show that the proposed method performs well and is applicable to different garments in robotic manipulation.","PeriodicalId":300065,"journal":{"name":"International Conference on Cybernetics, Robotics and Control","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Cybernetics, Robotics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRC.2019.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work studies the problem of classification of a hung garment in the unfolding procedure by a home service robot. The sheer number of unpredictable configurations that the deformable object can end up in makes the visual identification of the object shape and size difficult. In this paper, we propose a hybrid dynamic model to recognize the pose of hung garment using a single manipulator. A dataset of hung garment is generated by capturing the depth images of real garments at the robotic platform (real images) and also the images of garment mesh model from offline simulation (synthetic images) respectively. Deep convolutional neural network is implemented to classify the category and estimate the pose of garment. Experiment results show that the proposed method performs well and is applicable to different garments in robotic manipulation.
基于混合动力学模型的机器人抓取可变形物体类别分类
本文研究了家用服务机器人展开晾衣过程中的分类问题。可变形物体最终可能形成的不可预测结构的绝对数量使得物体形状和大小的视觉识别变得困难。在本文中,我们提出了一种混合动力学模型来识别单机械手悬挂服装的姿态。通过在机器人平台上捕获真实服装的深度图像(真实图像)和离线仿真的服装网格模型图像(合成图像),分别生成悬挂服装数据集。利用深度卷积神经网络对服装进行分类和姿态估计。实验结果表明,该方法性能良好,适用于不同服装的机器人操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信