A wavelet neural network model for spatio-temporal image processing and modeling

Hua-Liang Wei, Yifan Zhao, Richard M. Jiang
{"title":"A wavelet neural network model for spatio-temporal image processing and modeling","authors":"Hua-Liang Wei, Yifan Zhao, Richard M. Jiang","doi":"10.1109/ICCSE.2015.7250228","DOIUrl":null,"url":null,"abstract":"Spatio-temporal images are a class of complex dynamical systems that evolve over both space and time. Compared with pure temporal processes, the identification of spatio-temporal models from observed images is much more difficult and quite challenging. Starting with an assumption that there is no a priori information about the true model but only observed data are available, this work introduces a new type of wavelet network that utilizes the easy tractability and exploits the good properties of multiscale wavelet decompositions to represent the rules of the associated spatio-temporal evolutionary system. An application to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, is investigated to demonstrate the application of the proposed modeling and learning approaches.","PeriodicalId":311451,"journal":{"name":"2015 10th International Conference on Computer Science & Education (ICCSE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2015.7250228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spatio-temporal images are a class of complex dynamical systems that evolve over both space and time. Compared with pure temporal processes, the identification of spatio-temporal models from observed images is much more difficult and quite challenging. Starting with an assumption that there is no a priori information about the true model but only observed data are available, this work introduces a new type of wavelet network that utilizes the easy tractability and exploits the good properties of multiscale wavelet decompositions to represent the rules of the associated spatio-temporal evolutionary system. An application to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, is investigated to demonstrate the application of the proposed modeling and learning approaches.
基于小波神经网络的时空图像处理与建模
时空图像是一类复杂的动态系统,它随时间和空间的变化而变化。与纯粹的时间过程相比,从观测图像中识别时空模型要困难得多,而且具有很大的挑战性。本文从没有关于真实模型的先验信息而只有观测数据的假设出发,引入了一种新型的小波网络,该网络利用了多尺度小波分解的易追踪性和良好的特性来表示相关时空演化系统的规则。一个应用于化学反应表现出时空演化行为,被调查,以证明所提出的建模和学习方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信