A Grid and Density-Based Clustering Algorithm for Processing Data Stream

Chenke Jia, Chen Tan, Ai Yong
{"title":"A Grid and Density-Based Clustering Algorithm for Processing Data Stream","authors":"Chenke Jia, Chen Tan, Ai Yong","doi":"10.1109/WGEC.2008.32","DOIUrl":null,"url":null,"abstract":"This paper proposes DD-Stream, a framework for density-based clustering stream data. The algorithm adopts a density decaying technique to capture the evolving data stream and extracts the boundary point of grid by the DCQ-means algorithm. Our method resolving the problem of evolving automatic clustering of real-time data streams, cannot only find arbitrary shaped clusters with noise, but also avoid the clustering quality problems caused by discarding the boundary point of grid, our algorithm has better scalability in processing large-scale and high dimensional stream data as well.","PeriodicalId":198475,"journal":{"name":"2008 Second International Conference on Genetic and Evolutionary Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Genetic and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WGEC.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

This paper proposes DD-Stream, a framework for density-based clustering stream data. The algorithm adopts a density decaying technique to capture the evolving data stream and extracts the boundary point of grid by the DCQ-means algorithm. Our method resolving the problem of evolving automatic clustering of real-time data streams, cannot only find arbitrary shaped clusters with noise, but also avoid the clustering quality problems caused by discarding the boundary point of grid, our algorithm has better scalability in processing large-scale and high dimensional stream data as well.
一种基于网格和密度的数据流聚类算法
本文提出了基于密度的流数据聚类框架DD-Stream。该算法采用密度衰减技术捕获不断变化的数据流,并采用DCQ-means算法提取网格边界点。该方法解决了实时数据流的演化自动聚类问题,既能发现带有噪声的任意形状聚类,又避免了丢弃网格边界点所带来的聚类质量问题,在处理大规模高维流数据时具有更好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信