Lessons Learned and Results from Applying Data-Driven Cost Estimation to Industrial Data Sets

J. Heidrich, Adam Trendowicz, Jürgen Münch, Yasushi Ishigai, Kenji Yokoyama, Nahomi Kikuchi, Takashi Kawaguchi
{"title":"Lessons Learned and Results from Applying Data-Driven Cost Estimation to Industrial Data Sets","authors":"J. Heidrich, Adam Trendowicz, Jürgen Münch, Yasushi Ishigai, Kenji Yokoyama, Nahomi Kikuchi, Takashi Kawaguchi","doi":"10.1109/QUATIC.2007.16","DOIUrl":null,"url":null,"abstract":"The increasing availability of cost-relevant data in industry allows companies to apply data-intensive estimation methods. However, available data are often inconsistent, invalid, or incomplete, so that most of the existing data-intensive estimation methods cannot be applied. Only few estimation methods can deal with imperfect data to a certain extent (e.g., optimized set reduction, OSR). Results from evaluating these methods in practical environments are rare. This article describes a case study on the application of OSR at Toshiba information systems (Japan) corporation. An important result of the case study is that estimation accuracy significantly varies with the data sets used and the way of preprocessing these data. The study supports current results in the area of quantitative cost estimation and clearly illustrates typical problems. Experiences, lessons learned, and recommendations with respect to data preprocessing and data-intensive cost estimation in general are presented.","PeriodicalId":236466,"journal":{"name":"6th International Conference on the Quality of Information and Communications Technology (QUATIC 2007)","volume":"38 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on the Quality of Information and Communications Technology (QUATIC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QUATIC.2007.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing availability of cost-relevant data in industry allows companies to apply data-intensive estimation methods. However, available data are often inconsistent, invalid, or incomplete, so that most of the existing data-intensive estimation methods cannot be applied. Only few estimation methods can deal with imperfect data to a certain extent (e.g., optimized set reduction, OSR). Results from evaluating these methods in practical environments are rare. This article describes a case study on the application of OSR at Toshiba information systems (Japan) corporation. An important result of the case study is that estimation accuracy significantly varies with the data sets used and the way of preprocessing these data. The study supports current results in the area of quantitative cost estimation and clearly illustrates typical problems. Experiences, lessons learned, and recommendations with respect to data preprocessing and data-intensive cost estimation in general are presented.
将数据驱动的成本估算应用于工业数据集的经验教训和结果
工业中成本相关数据的可用性越来越高,这使得公司能够应用数据密集型估算方法。然而,可用的数据往往不一致、无效或不完整,因此大多数现有的数据密集型估计方法都无法应用。只有少数几种估计方法可以在一定程度上处理不完美数据(如优化集约简,OSR)。在实际环境中评估这些方法的结果很少。本文介绍了OSR在东芝信息系统(日本)公司的应用案例。案例研究的一个重要结果是,估计精度随使用的数据集和预处理这些数据的方式而显著变化。该研究支持了定量成本估算领域的现有成果,并清楚地说明了典型问题。介绍了有关数据预处理和数据密集型成本估计的经验、教训和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信