PCL: Proxy-based Contrastive Learning for Domain Generalization

Xu Yao, Yang Bai, Xinyun Zhang, Yuechen Zhang, Qi Sun, Ran Chen, Ruiyu Li, Bei Yu
{"title":"PCL: Proxy-based Contrastive Learning for Domain Generalization","authors":"Xu Yao, Yang Bai, Xinyun Zhang, Yuechen Zhang, Qi Sun, Ran Chen, Ruiyu Li, Bei Yu","doi":"10.1109/CVPR52688.2022.00696","DOIUrl":null,"url":null,"abstract":"Domain generalization refers to the problem of training a model from a collection of different source domains that can directly generalize to the unseen target domains. A promising solution is contrastive learning, which attempts to learn domain-invariant representations by exploiting rich semantic relations among sample-to-sample pairs from different domains. A simple approach is to pull positive sample pairs from different domains closer while pushing other negative pairs further apart. In this paper, we find that directly applying contrastive-based methods (e.g., supervised contrastive learning) are not effective in domain generalization. We argue that aligning positive sample-to-sample pairs tends to hinder the model generalization due to the significant distribution gaps between different domains. To address this issue, we propose a novel proxy-based contrastive learning method, which replaces the original sample-to-sample relations with proxy-to-sample relations, significantly alleviating the positive alignment issue. Experiments on the four standard benchmarks demonstrate the effectiveness of the proposed method. Furthermore, we also consider a more complex scenario where no ImageNet pre-trained models are provided. Our method consistently shows better performance.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Domain generalization refers to the problem of training a model from a collection of different source domains that can directly generalize to the unseen target domains. A promising solution is contrastive learning, which attempts to learn domain-invariant representations by exploiting rich semantic relations among sample-to-sample pairs from different domains. A simple approach is to pull positive sample pairs from different domains closer while pushing other negative pairs further apart. In this paper, we find that directly applying contrastive-based methods (e.g., supervised contrastive learning) are not effective in domain generalization. We argue that aligning positive sample-to-sample pairs tends to hinder the model generalization due to the significant distribution gaps between different domains. To address this issue, we propose a novel proxy-based contrastive learning method, which replaces the original sample-to-sample relations with proxy-to-sample relations, significantly alleviating the positive alignment issue. Experiments on the four standard benchmarks demonstrate the effectiveness of the proposed method. Furthermore, we also consider a more complex scenario where no ImageNet pre-trained models are provided. Our method consistently shows better performance.
面向领域泛化的基于代理的对比学习
领域泛化是指从不同的源领域的集合中训练一个模型的问题,该模型可以直接泛化到未知的目标领域。对比学习是一种很有前途的解决方案,它试图通过利用来自不同领域的样本对之间丰富的语义关系来学习领域不变表示。一种简单的方法是将来自不同区域的阳性样本对拉得更近,同时将其他阴性样本对推得更远。在本文中,我们发现直接应用基于对比的方法(如监督对比学习)在领域泛化中是无效的。我们认为,由于不同域之间存在显著的分布差距,对齐正样本对往往会阻碍模型的泛化。为了解决这个问题,我们提出了一种新的基于代理的对比学习方法,该方法用代理与样本之间的关系取代了原始的样本与样本之间的关系,显著缓解了正对齐问题。在四个标准基准上的实验证明了该方法的有效性。此外,我们还考虑了一个更复杂的场景,其中没有提供ImageNet预训练模型。我们的方法始终表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信