{"title":"NQ/ATP: Architectural Support for Massive Aggregate Queries in Data Center Networks","authors":"Yixi Chen, Wenfei Wu, Shan-Hsiang Shen, Ying Zhang","doi":"10.1109/IWQoS54832.2022.9812906","DOIUrl":null,"url":null,"abstract":"Network queries become increasingly challenging for online service providers with massive network devices and massive network queries due to the tradeoff between system scale and query granularity. We re-architect the traditional three-tier architecture, i.e., data collection, data storage, and data query, for aggregate queries, and build a system named NQ/ATP. NQ/ATP offloads the aggregation operation in network queries onto network switches, which accelerates the query execution and frees up network resources. NQ/ATP further devises a route learning mechanism, query hierarchy load balancing policy, and hierarchy clustering mechanism to save forwarding table entries on switches, which better supports massive queries. The evaluation shows that NQ/ATP can support network aggregate queries with higher capacity, less traffic volume, finer granularity, and better scalability than traditional three-tier polling architectures. The three optimizations can effectively reduce the forwarding table usage by up to 97.55%.","PeriodicalId":353365,"journal":{"name":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS54832.2022.9812906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Network queries become increasingly challenging for online service providers with massive network devices and massive network queries due to the tradeoff between system scale and query granularity. We re-architect the traditional three-tier architecture, i.e., data collection, data storage, and data query, for aggregate queries, and build a system named NQ/ATP. NQ/ATP offloads the aggregation operation in network queries onto network switches, which accelerates the query execution and frees up network resources. NQ/ATP further devises a route learning mechanism, query hierarchy load balancing policy, and hierarchy clustering mechanism to save forwarding table entries on switches, which better supports massive queries. The evaluation shows that NQ/ATP can support network aggregate queries with higher capacity, less traffic volume, finer granularity, and better scalability than traditional three-tier polling architectures. The three optimizations can effectively reduce the forwarding table usage by up to 97.55%.