Proposed Consistent Exception Handling for the BLAS and LAPACK

J. Demmel, J. Dongarra, M. Gates, G. Henry, J. Langou, Xiaoye Li, P. Luszczek, W. Pereira, Jason Riedy, Cindy Rubio-Gonz'alez
{"title":"Proposed Consistent Exception Handling for the BLAS and LAPACK","authors":"J. Demmel, J. Dongarra, M. Gates, G. Henry, J. Langou, Xiaoye Li, P. Luszczek, W. Pereira, Jason Riedy, Cindy Rubio-Gonz'alez","doi":"10.1109/Correctness56720.2022.00006","DOIUrl":null,"url":null,"abstract":"Numerical exceptions, which may be caused by overflow, operations like division by 0 or sqrt(−1), or conver-gence failures, are unavoidable in many cases, in particular when software is used on unforeseen and difficult inputs. As more aspects of society become automated e.g., self-driving cars, health monitors, and cyber-physical systems more generally, it is becoming increasingly important to design software that is resilient to exceptions, and that responds to them in a consistent way. Consistency is needed to allow users to build higher-level software that is also resilient and consistent (and so on recursively). In this paper we explore the design space of consistent exception handling for the widely used BLAS and LAPACK linear algebra libraries, pointing out a variety of instances of inconsistent exception handling in the current versions, and propose a new design that balances consistency, complexity, ease of use, and performance. Some compromises are needed, because there are preexisting inconsistencies that are outside our control, including in or between existing vendor BLAS implementations, different programming languages, and even compilers for the same programming language. And user requests from our surveys are quite diverse. We also propose our design as a possible model for other numerical software, and welcome comments on our design choices.","PeriodicalId":211482,"journal":{"name":"2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Correctness56720.2022.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Numerical exceptions, which may be caused by overflow, operations like division by 0 or sqrt(−1), or conver-gence failures, are unavoidable in many cases, in particular when software is used on unforeseen and difficult inputs. As more aspects of society become automated e.g., self-driving cars, health monitors, and cyber-physical systems more generally, it is becoming increasingly important to design software that is resilient to exceptions, and that responds to them in a consistent way. Consistency is needed to allow users to build higher-level software that is also resilient and consistent (and so on recursively). In this paper we explore the design space of consistent exception handling for the widely used BLAS and LAPACK linear algebra libraries, pointing out a variety of instances of inconsistent exception handling in the current versions, and propose a new design that balances consistency, complexity, ease of use, and performance. Some compromises are needed, because there are preexisting inconsistencies that are outside our control, including in or between existing vendor BLAS implementations, different programming languages, and even compilers for the same programming language. And user requests from our surveys are quite diverse. We also propose our design as a possible model for other numerical software, and welcome comments on our design choices.
建议一致的异常处理BLAS和LAPACK
在许多情况下,数字异常是不可避免的,这可能是由溢出、除0或sqrt(- 1)之类的操作或收敛失败引起的,特别是当软件用于不可预见和困难的输入时。随着社会越来越多的方面变得自动化,例如自动驾驶汽车、健康监视器和更普遍的网络物理系统,设计能够适应异常的软件并以一致的方式对它们做出反应变得越来越重要。一致性需要允许用户构建具有弹性和一致性的高级软件(以此类推)。在本文中,我们探讨了广泛使用的BLAS和LAPACK线性代数库的一致性异常处理的设计空间,指出了当前版本中不一致异常处理的各种实例,并提出了一种平衡一致性、复杂性、易用性和性能的新设计。有些妥协是需要的,因为存在我们无法控制的预先存在的不一致性,包括在现有供应商的BLAS实现、不同的编程语言、甚至相同编程语言的编译器中或之间的不一致性。来自我们调查的用户要求是非常多样化的。我们还提出了我们的设计作为其他数值软件的可能模型,并欢迎对我们的设计选择提出意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信