Boolean Tensor Factorizations

Pauli Miettinen
{"title":"Boolean Tensor Factorizations","authors":"Pauli Miettinen","doi":"10.1109/ICDM.2011.28","DOIUrl":null,"url":null,"abstract":"Tensors are multi-way generalizations of matrices, and similarly to matrices, they can also be factorized, that is, represented (approximately) as a product of factors. These factors are typically either all matrices or a mixture of matrices and tensors. With the widespread adoption of matrix factorization techniques in data mining, also tensor factorizations have started to gain attention. In this paper we study the Boolean tensor factorizations. We assume that the data is binary multi-way data, and we want to factorize it to binary factors using Boolean arithmetic (i.e. defining that 1+1=1). Boolean tensor factorizations are, therefore, natural generalization of the Boolean matrix factorizations. We will study the theory of Boolean tensor factorizations and show that at least some of the benefits Boolean matrix factorizations have over normal matrix factorizations carry over to the tensor data. We will also present algorithms for Boolean variations of CP and Tucker decompositions, the two most-common types of tensor factorizations. With experimentation done with synthetic and real-world data, we show that Boolean tensor factorizations are a viable alternative when the data is naturally binary.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"741 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Tensors are multi-way generalizations of matrices, and similarly to matrices, they can also be factorized, that is, represented (approximately) as a product of factors. These factors are typically either all matrices or a mixture of matrices and tensors. With the widespread adoption of matrix factorization techniques in data mining, also tensor factorizations have started to gain attention. In this paper we study the Boolean tensor factorizations. We assume that the data is binary multi-way data, and we want to factorize it to binary factors using Boolean arithmetic (i.e. defining that 1+1=1). Boolean tensor factorizations are, therefore, natural generalization of the Boolean matrix factorizations. We will study the theory of Boolean tensor factorizations and show that at least some of the benefits Boolean matrix factorizations have over normal matrix factorizations carry over to the tensor data. We will also present algorithms for Boolean variations of CP and Tucker decompositions, the two most-common types of tensor factorizations. With experimentation done with synthetic and real-world data, we show that Boolean tensor factorizations are a viable alternative when the data is naturally binary.
布尔张量分解
张量是矩阵的多向推广,与矩阵类似,它们也可以被分解,即(近似地)表示为因子的乘积。这些因子通常是所有矩阵或矩阵和张量的混合物。随着矩阵分解技术在数据挖掘中的广泛应用,张量分解也开始受到关注。本文研究了布尔张量分解。我们假设数据是二进制多路数据,并且我们希望使用布尔算法(即定义1+1=1)将其分解为二进制因子。因此,布尔张量分解是布尔矩阵分解的自然推广。我们将研究布尔张量分解的理论,并证明布尔矩阵分解比普通矩阵分解至少有一些好处延续到张量数据中。我们还将介绍CP和Tucker分解的布尔变量的算法,这是两种最常见的张量分解类型。通过对合成数据和真实数据进行的实验,我们表明,当数据是自然二进制时,布尔张量分解是一种可行的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信