A Review on Rice Crop Disease Classification Using Computational Approach

V. Malathi, M. P. Gopinath
{"title":"A Review on Rice Crop Disease Classification Using Computational Approach","authors":"V. Malathi, M. P. Gopinath","doi":"10.1142/s0219467822400071","DOIUrl":null,"url":null,"abstract":"Rice is a significant cereal crop across the world. In rice cultivation, different types of sowing methods are followed, and thus bring in issues regarding sampling collection. Climate, soil, water level, and a diversified variety of crop seeds (hybrid and traditional varieties) and the period of growth are some of the challenges. This survey mainly focuses on rice crop diseases which affect the parts namely leaves, stems, roots, and spikelet; it mainly focuses on leaf-based diseases. Existing methods for diagnosing leaf disease include statistical approaches, data mining, image processing, machine learning, and deep learning techniques. This review mainly addresses diseases of the rice crop, a framework to diagnose rice crop diseases, and computational approaches in Image Processing, Machine Learning, Deep Learning, and Convolutional Neural Networks. Based on performance indicators, interpretations were made for the following algorithms namely support vector machine (SVM), convolutional neural network (CNN), backpropagational neural network (BPNN), and feedforward neural network (FFNN).","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"378 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467822400071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Rice is a significant cereal crop across the world. In rice cultivation, different types of sowing methods are followed, and thus bring in issues regarding sampling collection. Climate, soil, water level, and a diversified variety of crop seeds (hybrid and traditional varieties) and the period of growth are some of the challenges. This survey mainly focuses on rice crop diseases which affect the parts namely leaves, stems, roots, and spikelet; it mainly focuses on leaf-based diseases. Existing methods for diagnosing leaf disease include statistical approaches, data mining, image processing, machine learning, and deep learning techniques. This review mainly addresses diseases of the rice crop, a framework to diagnose rice crop diseases, and computational approaches in Image Processing, Machine Learning, Deep Learning, and Convolutional Neural Networks. Based on performance indicators, interpretations were made for the following algorithms namely support vector machine (SVM), convolutional neural network (CNN), backpropagational neural network (BPNN), and feedforward neural network (FFNN).
基于计算方法的水稻病害分类研究进展
水稻是世界上重要的谷类作物。在水稻种植中,采用不同类型的播种方法,因此带来了采样问题。气候、土壤、水位、作物种子的多样化(杂交品种和传统品种)和生长期是其中的一些挑战。本次调查主要针对水稻作物的叶、茎、根和小穗等部位的病害;它主要关注叶基疾病。现有的诊断叶片疾病的方法包括统计方法、数据挖掘、图像处理、机器学习和深度学习技术。本文主要介绍了水稻作物病害、水稻作物病害诊断框架以及图像处理、机器学习、深度学习和卷积神经网络的计算方法。基于性能指标,对支持向量机(SVM)、卷积神经网络(CNN)、反向传播神经网络(BPNN)、前馈神经网络(FFNN)等算法进行了解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信