{"title":"3-D Placement of UAVs Based on SIR-Measured PSO Algorithm","authors":"Wentao Liu, Guanchong Niu, Qi Cao, Man-On Pun, Junting Chen","doi":"10.1109/GCWkshps45667.2019.9024696","DOIUrl":null,"url":null,"abstract":"This work studies the deployment of unmanned aerial vehicles (UAVs) as emergency access points to provide wireless services to users in a green field. Specifically, three fundamental design issues are explored under practical 3D air-to-ground (ATG) channel models, namely the minimum number of UAVs, their optimal deployment locations and the optimal transmit power allocation. To decouple these design goals, a particle swarm optimization (PSO)-based scheme in conjunction with the balanced Signal to Interference plus Noise Ratio (SINR) transmit power allocation is proposed. Exploiting the closed-form expressions of the SINR-balanced optimal power allocation and the resulting SINR, the proposed PSO-based scheme optimizes the UAV location generation by generation. Furthermore, a K-means clustering-based initialization scheme is developed to improve the performance of the proposed PSO-based scheme. Finally, a power fine-tuning scheme is devised to further reduce the total transmit power. Extensive simulation is performed to confirm the good performance of the proposed scheme.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This work studies the deployment of unmanned aerial vehicles (UAVs) as emergency access points to provide wireless services to users in a green field. Specifically, three fundamental design issues are explored under practical 3D air-to-ground (ATG) channel models, namely the minimum number of UAVs, their optimal deployment locations and the optimal transmit power allocation. To decouple these design goals, a particle swarm optimization (PSO)-based scheme in conjunction with the balanced Signal to Interference plus Noise Ratio (SINR) transmit power allocation is proposed. Exploiting the closed-form expressions of the SINR-balanced optimal power allocation and the resulting SINR, the proposed PSO-based scheme optimizes the UAV location generation by generation. Furthermore, a K-means clustering-based initialization scheme is developed to improve the performance of the proposed PSO-based scheme. Finally, a power fine-tuning scheme is devised to further reduce the total transmit power. Extensive simulation is performed to confirm the good performance of the proposed scheme.