An object following method based on computational geometry and PTAM for UAV in unknown environments

Yuxi Huang, Ming Lv, D. Xiong, Shaowu Yang, Huimin Lu
{"title":"An object following method based on computational geometry and PTAM for UAV in unknown environments","authors":"Yuxi Huang, Ming Lv, D. Xiong, Shaowu Yang, Huimin Lu","doi":"10.1109/ICINFA.2016.7831891","DOIUrl":null,"url":null,"abstract":"This paper introduces an object following method based on the computational geometry and PTAM for Unmanned Aerial Vehicle(UAV) in unknown environments. Since the object is easy to move out of the field of view(FOV) of the camera, and it is difficult to make it back to the field of camera view just by relative attitude control, we propose a novel solution to re-find the object based on the visual simultaneous localization and mapping (SLAM) results by PTAM. We use a pad as the object which includes a letter H surrounded by a circle. We can get the 3D position of the center of the circle in camera coordinate system using the computational geometry. When the object moves out of the FOV of the camera, the Kalman filter is used to predict the object velocity, so the pad can be searched effectively. We demonstrate that the ambiguity of the pad's localization has little impact on object following through experiments. The experimental results also validate the effectiveness and efficiency of the proposed method.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7831891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces an object following method based on the computational geometry and PTAM for Unmanned Aerial Vehicle(UAV) in unknown environments. Since the object is easy to move out of the field of view(FOV) of the camera, and it is difficult to make it back to the field of camera view just by relative attitude control, we propose a novel solution to re-find the object based on the visual simultaneous localization and mapping (SLAM) results by PTAM. We use a pad as the object which includes a letter H surrounded by a circle. We can get the 3D position of the center of the circle in camera coordinate system using the computational geometry. When the object moves out of the FOV of the camera, the Kalman filter is used to predict the object velocity, so the pad can be searched effectively. We demonstrate that the ambiguity of the pad's localization has little impact on object following through experiments. The experimental results also validate the effectiveness and efficiency of the proposed method.
基于计算几何和PTAM的未知环境下无人机目标跟踪方法
介绍了一种基于计算几何和PTAM的未知环境下无人机目标跟踪方法。针对目标容易移出相机视场,且仅靠相对姿态控制难以将目标拉回相机视场的问题,提出了一种基于PTAM视觉同步定位与映射(SLAM)结果的目标重新定位的新方法。我们使用一个便笺本作为对象,它包括一个被圆圈包围的字母H。利用计算几何方法可以得到摄像机坐标系中圆心的三维位置。当目标移动到摄像机视场外时,利用卡尔曼滤波对目标速度进行预测,从而有效地对pad进行搜索。实验结果表明,定位模糊对目标跟踪影响不大。实验结果也验证了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信