{"title":"Platform-independent analysis of function-level communication in workloads","authors":"Siddharth Nilakantan, Mark Hempstead","doi":"10.1109/IISWC.2013.6704685","DOIUrl":null,"url":null,"abstract":"The emergence of many-core and heterogeneous multicore processors has meant that data communication patterns increasingly determine application performance. Microprocessor designers need tools that can extract and represent these producer-consumer relationships for a workload to aid them in a wide range of tasks including hardware-software co-design, software partitioning, and application performance optimization. This paper presents Sigil, a profiling tool that can extract communication patterns within a workload independent of hardware characteristics. We show how our methodology can extract the true costs of communication within a workload by distinguishing between unique, local, and total communication. We describe the implementation and performance of Sigil as well as the results of several case studies.","PeriodicalId":365868,"journal":{"name":"2013 IEEE International Symposium on Workload Characterization (IISWC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2013.6704685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The emergence of many-core and heterogeneous multicore processors has meant that data communication patterns increasingly determine application performance. Microprocessor designers need tools that can extract and represent these producer-consumer relationships for a workload to aid them in a wide range of tasks including hardware-software co-design, software partitioning, and application performance optimization. This paper presents Sigil, a profiling tool that can extract communication patterns within a workload independent of hardware characteristics. We show how our methodology can extract the true costs of communication within a workload by distinguishing between unique, local, and total communication. We describe the implementation and performance of Sigil as well as the results of several case studies.