Adapting Sequential Monte-Carlo Estimation to Cooperative Localization in Wireless Sensor Networks

M. Castillo-Effen, W. Moreno, M. Labrador, K. Valavanis
{"title":"Adapting Sequential Monte-Carlo Estimation to Cooperative Localization in Wireless Sensor Networks","authors":"M. Castillo-Effen, W. Moreno, M. Labrador, K. Valavanis","doi":"10.1109/MOBHOC.2006.278629","DOIUrl":null,"url":null,"abstract":"Localization is a key function in wireless sensor networks (WSNs). Many applications and internal mechanisms require nodes to know their location. This work proposes a new sequential estimation algorithm for distributed cooperative localization, whose simplicity makes it amenable to self-localization in wireless sensor networks (WSNs), characterized by their restricted resources in energy and computation. The algorithm is inspired in sequential Monte-Carlo estimation techniques, viz. particle filters that excel in robustness and simplicity for estimation applications. However, particle filters require significant amounts of memory and computational power for managing large numbers of particles. The presented technique reduces the number of particles, while retaining the convergence, accuracy and simplicity properties, as demonstrated in simulation experiments","PeriodicalId":345003,"journal":{"name":"2006 IEEE International Conference on Mobile Ad Hoc and Sensor Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOBHOC.2006.278629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Localization is a key function in wireless sensor networks (WSNs). Many applications and internal mechanisms require nodes to know their location. This work proposes a new sequential estimation algorithm for distributed cooperative localization, whose simplicity makes it amenable to self-localization in wireless sensor networks (WSNs), characterized by their restricted resources in energy and computation. The algorithm is inspired in sequential Monte-Carlo estimation techniques, viz. particle filters that excel in robustness and simplicity for estimation applications. However, particle filters require significant amounts of memory and computational power for managing large numbers of particles. The presented technique reduces the number of particles, while retaining the convergence, accuracy and simplicity properties, as demonstrated in simulation experiments
基于时序蒙特卡罗估计的无线传感器网络协同定位
定位是无线传感器网络的一个关键功能。许多应用程序和内部机制需要节点知道它们的位置。本文提出了一种新的分布式协同定位序列估计算法,该算法的简单性使其适用于能量和计算资源有限的无线传感器网络中的自定位问题。该算法的灵感来自于顺序蒙特卡罗估计技术,即粒子滤波器,在鲁棒性和简单性方面优于估计应用。然而,粒子过滤器需要大量的内存和计算能力来管理大量的粒子。仿真实验表明,该方法减少了粒子数量,同时保持了收敛性、准确性和简单性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信