An improved design for high speed analog applications of the fully differential operational floating conveyor

Hossam ElGemmazy, A. Helmy, H. Mostafa, Y. Ismail
{"title":"An improved design for high speed analog applications of the fully differential operational floating conveyor","authors":"Hossam ElGemmazy, A. Helmy, H. Mostafa, Y. Ismail","doi":"10.1109/ICM.2017.8268890","DOIUrl":null,"url":null,"abstract":"This paper presents a novel concept along with a suggested CMOS-based design of the fully differential operational floating conveyor (FD-OFC). The FD-OFC concept and design has been introduced for the first time by the authors [9] as an 8 (4×4) port general purpose analog building block. The differential action offered by the proposed design can be empolyed in numerous analog and/or hybrid (analog/digital) VLSI applications, particularly where a high noise rejection ratio is desired. Furthermore, the proposed design can operate under biasing conditions as low as 1.2 V (instead of the 1.5 V bias in [9]) at frequencies up to 600 MHz in addition to higher open loop transimpedance gain of 104 dB (compared to 44.5 dB in [9]). These operating conditions recommend the proposed device to be integrated to a wide range of low power-high speed applications. The terminal behavior of the proposed device is mathematically modeled and its operation is simulated using the UMC 130 nm technology kit in Cadence environment.","PeriodicalId":115975,"journal":{"name":"2017 29th International Conference on Microelectronics (ICM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2017.8268890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel concept along with a suggested CMOS-based design of the fully differential operational floating conveyor (FD-OFC). The FD-OFC concept and design has been introduced for the first time by the authors [9] as an 8 (4×4) port general purpose analog building block. The differential action offered by the proposed design can be empolyed in numerous analog and/or hybrid (analog/digital) VLSI applications, particularly where a high noise rejection ratio is desired. Furthermore, the proposed design can operate under biasing conditions as low as 1.2 V (instead of the 1.5 V bias in [9]) at frequencies up to 600 MHz in addition to higher open loop transimpedance gain of 104 dB (compared to 44.5 dB in [9]). These operating conditions recommend the proposed device to be integrated to a wide range of low power-high speed applications. The terminal behavior of the proposed device is mathematically modeled and its operation is simulated using the UMC 130 nm technology kit in Cadence environment.
一个改进的设计,高速模拟应用的全差分操作浮动输送机
本文提出了一种新颖的概念以及基于cmos的全差分操作浮动输送机(FD-OFC)的建议设计。FD-OFC概念和设计首次由作者[9]作为8 (4×4)端口通用模拟构建块引入。所提出的设计提供的差分作用可用于许多模拟和/或混合(模拟/数字)VLSI应用,特别是在需要高噪声抑制比的情况下。此外,所提出的设计可以在高达600 MHz的频率下在低至1.2 V的偏置条件下工作(而不是[9]中的1.5 V偏置),此外还可以获得104 dB的高开环跨阻增益(而不是[9]中的44.5 dB)。这些操作条件建议所提出的器件集成到广泛的低功耗高速应用中。利用UMC 130nm技术套件在Cadence环境下对该器件的终端行为进行了数学建模,并对其工作进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信