Road user tracking at intersections using a multiple-model PHD filter

D. Meissner, Stephan Reuter, K. Dietmayer
{"title":"Road user tracking at intersections using a multiple-model PHD filter","authors":"D. Meissner, Stephan Reuter, K. Dietmayer","doi":"10.1109/IVS.2013.6629498","DOIUrl":null,"url":null,"abstract":"A major aim of the joint project Ko-PER is the mitigation of fatal accidents at urban intersections. Therefore several test intersections have been equipped with multiple laser range finders to recognize and track road users. Besides a high traffic density the variety of road users is challenging. In this contribution a multiple-model (MM) probability hypothesis density filter with a track representation extended by class probabilities is proposed. The approach enables tracking of road users with appropriate motion models using a single MM filter. Due to the estimation of the class probabilities an adaption of the transition probabilities between the models is possible. The performance of the road user tracking is evaluated using real world data.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"99 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

A major aim of the joint project Ko-PER is the mitigation of fatal accidents at urban intersections. Therefore several test intersections have been equipped with multiple laser range finders to recognize and track road users. Besides a high traffic density the variety of road users is challenging. In this contribution a multiple-model (MM) probability hypothesis density filter with a track representation extended by class probabilities is proposed. The approach enables tracking of road users with appropriate motion models using a single MM filter. Due to the estimation of the class probabilities an adaption of the transition probabilities between the models is possible. The performance of the road user tracking is evaluated using real world data.
使用多模型PHD滤波器在十字路口跟踪道路使用者
Ko-PER联合项目的一个主要目标是减少城市十字路口的致命事故。因此,几个测试路口配备了多个激光测距仪来识别和跟踪道路使用者。除了交通密度高外,道路使用者的多样性也是一个挑战。本文提出了一种多模型(MM)概率假设密度滤波器,该滤波器具有由类概率扩展的轨迹表示。该方法允许使用单个MM过滤器使用适当的运动模型跟踪道路使用者。由于类概率的估计,模型之间的过渡概率的自适应是可能的。使用真实世界的数据评估道路使用者跟踪的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信