Kanza Hamid, Amina Asif, Wajid Arshad Abbasi, D. Sabih, F. Minhas
{"title":"Machine Learning with Abstention for Automated Liver Disease Diagnosis","authors":"Kanza Hamid, Amina Asif, Wajid Arshad Abbasi, D. Sabih, F. Minhas","doi":"10.1109/FIT.2017.00070","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for detection of liver abnormalities in an automated manner using ultrasound images. For this purpose, we have implemented a machine learning model that can, not only generate labels (normal and abnormal) for a given ultrasound image but, it can also detect when its prediction is likely to be incorrect. The proposed model abstains from generating the label of a test example if it is not confident about its prediction. Such behavior is commonly practiced by medical doctors who, when given insufficient information or a difficult case, can choose to carry out further clinical or diagnostic tests before generating a diagnosis. However, existing machine learning models are designed in a way to always generate a label for a given example even when the confidence of their prediction is low. We have proposed a novel stochastic gradient descent based solver for the learning with abstention paradigm and use it to make a practical, state of the art method for liver disease classification. The proposed method has been benchmarked on a data set of approximately 100 patients from MINAR, Multan, Pakistan and our results show that the performance of the proposed scheme is at par with medical experts.","PeriodicalId":107273,"journal":{"name":"2017 International Conference on Frontiers of Information Technology (FIT)","volume":"85 26","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Frontiers of Information Technology (FIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2017.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
This paper presents a novel approach for detection of liver abnormalities in an automated manner using ultrasound images. For this purpose, we have implemented a machine learning model that can, not only generate labels (normal and abnormal) for a given ultrasound image but, it can also detect when its prediction is likely to be incorrect. The proposed model abstains from generating the label of a test example if it is not confident about its prediction. Such behavior is commonly practiced by medical doctors who, when given insufficient information or a difficult case, can choose to carry out further clinical or diagnostic tests before generating a diagnosis. However, existing machine learning models are designed in a way to always generate a label for a given example even when the confidence of their prediction is low. We have proposed a novel stochastic gradient descent based solver for the learning with abstention paradigm and use it to make a practical, state of the art method for liver disease classification. The proposed method has been benchmarked on a data set of approximately 100 patients from MINAR, Multan, Pakistan and our results show that the performance of the proposed scheme is at par with medical experts.