Corner Detection Based on Scalable Masks

I. Kazantsev, B. Mukhametzhanova, Suvorovsky O. Yu
{"title":"Corner Detection Based on Scalable Masks","authors":"I. Kazantsev, B. Mukhametzhanova, Suvorovsky O. Yu","doi":"10.1109/SIST50301.2021.9465940","DOIUrl":null,"url":null,"abstract":"Scalable masks for the selection of angular structures in two-dimensional (2D) digital images are considered. The mask is a 2D window sliding over the image and convolved with image fragments. We propose the model of a scalable 2D mask based on expanding smaller mask along its sides and edges. In this case, the submatrices remain unchanged, and the generation of new elements consists in repeating the elements of the submatrix, preserving the structure of the corner. Numerical experiments with test images are performed.","PeriodicalId":318915,"journal":{"name":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"26 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST50301.2021.9465940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scalable masks for the selection of angular structures in two-dimensional (2D) digital images are considered. The mask is a 2D window sliding over the image and convolved with image fragments. We propose the model of a scalable 2D mask based on expanding smaller mask along its sides and edges. In this case, the submatrices remain unchanged, and the generation of new elements consists in repeating the elements of the submatrix, preserving the structure of the corner. Numerical experiments with test images are performed.
基于可缩放蒙版的角点检测
考虑了用于选择二维数字图像中角结构的可伸缩掩模。遮罩是一个在图像上滑动的2D窗口,并与图像片段进行卷积。我们提出了基于沿其侧面和边缘扩展较小掩模的可缩放二维掩模模型。在这种情况下,子矩阵保持不变,新元素的生成包括重复子矩阵的元素,保留角的结构。用测试图像进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信