Evaluating MapReduce for profiling application traffic

HPPN '13 Pub Date : 2013-06-18 DOI:10.1145/2465839.2465846
T. Vieira, S. Fernandes, V. Garcia
{"title":"Evaluating MapReduce for profiling application traffic","authors":"T. Vieira, S. Fernandes, V. Garcia","doi":"10.1145/2465839.2465846","DOIUrl":null,"url":null,"abstract":"The use of MapReduce for distributed data processing has been growing and achieving benefits with its application for different workloads. MapReduce can be used for distributed traffic analysis, although network traces present characteristics which are not similar to the data type commonly processed through MapReduce. Motivated by the use of MapReduce for profiling application traffic and due to the lack of evaluation of MapReduce for network traffic analysis and the peculiarity of this kind of data, this paper evaluates the performance of MapReduce in packet level analysis and DPI, analysing its scalability, speed-up, and the behavior of MapReduce phases. The experiments provide evidences for the predominant phases in this kind of job, and show the impact of input size, block size and number of nodes, on MapReduce completion time and scalability.","PeriodicalId":212430,"journal":{"name":"HPPN '13","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HPPN '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465839.2465846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The use of MapReduce for distributed data processing has been growing and achieving benefits with its application for different workloads. MapReduce can be used for distributed traffic analysis, although network traces present characteristics which are not similar to the data type commonly processed through MapReduce. Motivated by the use of MapReduce for profiling application traffic and due to the lack of evaluation of MapReduce for network traffic analysis and the peculiarity of this kind of data, this paper evaluates the performance of MapReduce in packet level analysis and DPI, analysing its scalability, speed-up, and the behavior of MapReduce phases. The experiments provide evidences for the predominant phases in this kind of job, and show the impact of input size, block size and number of nodes, on MapReduce completion time and scalability.
评估MapReduce对应用流量的分析
MapReduce在分布式数据处理方面的使用一直在增长,并通过它的应用程序为不同的工作负载带来了好处。MapReduce可以用于分布式流量分析,尽管网络轨迹呈现的特征与MapReduce通常处理的数据类型不同。基于使用MapReduce分析应用流量的动机,由于缺乏对MapReduce进行网络流量分析的评估以及这类数据的特殊性,本文评估了MapReduce在数据包级分析和DPI方面的性能,分析了其可扩展性、加速和MapReduce阶段的行为。实验为这类任务的主要阶段提供了证据,并展示了输入大小、块大小和节点数量对MapReduce完成时间和可扩展性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信