A study on generating fuzzy classification rules using histograms

H. Ishibuchi, T. Nakashima
{"title":"A study on generating fuzzy classification rules using histograms","authors":"H. Ishibuchi, T. Nakashima","doi":"10.1109/KES.1998.725837","DOIUrl":null,"url":null,"abstract":"We examine the performance of four approaches to the fuzzy rule generation for pattern classification problems. Two approaches generate a single fuzzy if-then rule for each class by specifying the membership function of each antecedent fuzzy set using the information about attribute values of training patterns. The other two approaches are based on fuzzy grids with homogeneous fuzzy partitions of each attribute. Since these four approaches are very simple and involve no time-consuming procedures, they can be easily implemented and applied to real-world pattern classification problems. The performance of each approach for test patterns (i.e., the generalization of ability of each approach) is evaluated by cross-validation techniques on commonly used data sets. Simulation results are compared with the performance of various classification methods reported in the literature.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"43 15","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We examine the performance of four approaches to the fuzzy rule generation for pattern classification problems. Two approaches generate a single fuzzy if-then rule for each class by specifying the membership function of each antecedent fuzzy set using the information about attribute values of training patterns. The other two approaches are based on fuzzy grids with homogeneous fuzzy partitions of each attribute. Since these four approaches are very simple and involve no time-consuming procedures, they can be easily implemented and applied to real-world pattern classification problems. The performance of each approach for test patterns (i.e., the generalization of ability of each approach) is evaluated by cross-validation techniques on commonly used data sets. Simulation results are compared with the performance of various classification methods reported in the literature.
利用直方图生成模糊分类规则的研究
我们研究了模式分类问题的四种模糊规则生成方法的性能。两种方法通过使用训练模式的属性值信息指定每个先行模糊集的隶属度函数,为每个类生成单个模糊if-then规则。另外两种方法基于模糊网格,每个属性具有均匀的模糊划分。由于这四种方法非常简单,不涉及耗时的过程,因此它们可以很容易地实现并应用于实际的模式分类问题。测试模式的每种方法的性能(即,每种方法能力的泛化)通过对常用数据集的交叉验证技术进行评估。仿真结果与文献中报道的各种分类方法的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信