Avaliação do Consumo de Energia para o Treinamento de Aprendizado de Máquina utilizando Single-board computers baseadas em ARM

Felipe Bernardo, A. Yokoyama, Bruno Schulze, Mariza Ferro
{"title":"Avaliação do Consumo de Energia para o Treinamento de Aprendizado de Máquina utilizando Single-board computers baseadas em ARM","authors":"Felipe Bernardo, A. Yokoyama, Bruno Schulze, Mariza Ferro","doi":"10.5753/wscad.2021.18512","DOIUrl":null,"url":null,"abstract":"Neste trabalho é avaliado o uso de placas single-board computers baseadas em ARM para o treinamento de algoritmos de Aprendizado de Máquina (AM). Foi desenvolvido um conjunto experimental treinando o algoritmo XGBoost com 36 configurações de hiperparâmetros em quatro arquiteturas diferentes. Além disso, foi comparado a sua eficiência (consumo energético, custo de aquisição e tempo de execução) com as principais arquiteturas usadas no treinamento de algoritmos de AM (x86 e GPU). Os resultados mostram que este tipo de arquitetura pode se tornar uma alternativa viável e mais verde, não apenas para a inferência, mas também para a fase de treinamento desses algoritmos.","PeriodicalId":410043,"journal":{"name":"Anais do XXII Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD 2021)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXII Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2021.18512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Neste trabalho é avaliado o uso de placas single-board computers baseadas em ARM para o treinamento de algoritmos de Aprendizado de Máquina (AM). Foi desenvolvido um conjunto experimental treinando o algoritmo XGBoost com 36 configurações de hiperparâmetros em quatro arquiteturas diferentes. Além disso, foi comparado a sua eficiência (consumo energético, custo de aquisição e tempo de execução) com as principais arquiteturas usadas no treinamento de algoritmos de AM (x86 e GPU). Os resultados mostram que este tipo de arquitetura pode se tornar uma alternativa viável e mais verde, não apenas para a inferência, mas também para a fase de treinamento desses algoritmos.
基于ARM的单板计算机机器学习训练能耗评估
本文评估了基于ARM的单板计算机在机器学习算法训练中的应用。开发了一套训练XGBoost算法的实验集,该算法在四种不同的体系结构中具有36个超参数配置。此外,还将其效率(功耗、获取成本和执行时间)与AM算法(x86和GPU)训练中使用的主要架构进行了比较。结果表明,这种类型的体系结构可以成为一种可行的、更绿色的替代方案,不仅对推理,而且对这些算法的训练阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信